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Surface Tension in Ising Systems with 
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We consider an Ising spin system with Kac potentials in a torus of Z a, d/> 2, 
and fix the temperature below its Lebowitz-Penrose critical value. We prove 
that when the Kac scaling parameter y vanishes, the log of the probability of an 
interface becomes proportional to its area and the surface tension, related to the 
proportionality constant, converges to the van der Waals surface tension. The 
results are based on the analysis of the rate functionals for Gibbsian large 
deviations and on the proof that they F-converge to the perimeter functional of 
geometric measure theory (which extends the notion of area). Our considera- 
tions include nonsmooth interfaces, proving that the Gibbsian probability of an 
interface depends only on its area and not on its regularity. 
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1. INTRODUCTION 

The  t h e r m o d y n a m i c  free energy excess o f  a s imple  fluid when  two  pure  

phases  coexis t  is 

F =  f r  d2(r)  sp(n(r))  (1.1) 

where  L" is the  interface tha t  separa tes  the two  phases,  d2(r)  is the surface 
a rea  e lement ,  and  n(r) is a uni t  n o r m a l  to Z at r; finally, sp(n) is the surface 
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tension at the inverse temperature fl of a flat interface perpendicular to ii. 
The purpose of this paper is to derive (1.1) in the context of Ising spin 
systems with Kac potentials. In particular we compute the surface tension, 
proving the validity of the expression proposed by the van der Waals 
theory. 

In this introduction we stress the more physical aspects, leaving the 
mathematical details to the next sections. The surface tension is usually 
defined in Ising systems by a formula like 

1 Zp~f 
s/j. l , (n) '= fl I OAI log Z~.,]- (1.2) 

where A is (for instance) a cube in R d with the unit vector n normal to its 
Z + -  t o p  face, ]OAJ being the corresponding area; Zp+.., + and p.~l are then the 

partition functions with + + and + - ;  respectively, boundary conditions 
on the top and bottom of A and periodic conditions on the other sides. 

The relation with (1.1) comes from the assumption that the main 
contribution to the free energy difference when changing + into - in the 
bottom is due to the appearance of a flat interface normal on the average 
to n. According to (1.1), this excess free energy should then be IOAI sa(n), 
which then gives (1.2), but an exact equality can be achieved only in the 
thermodynamic limit where fluctuations are depressed. The existence of this 
thermodynamic limit has been proved for several classes of models; see, for 
instance, Bricmont et aL ~2~ A definition of the surface tension in terms of 
(1.2) is thus based on a preliminary assumption of the validity of (l.1) 
which conceptually should be derived first. 

Let us now turn to the probabilistic aspects of the issue, which lead us 
to large deviations, as can be most clearly seen in a formulation where ( 1.1 ) 
appears again in a somewhat oblique fashion. Call nLl the empirical 
average (i.e., the total magnetization density) of the spins in the cube A, 
where the Gibbs measure with periodic boundary conditions is defined. In 
our context the Gibbs distribution of m~l when A invades the whole space 
becomes supported by two values that we call +m/j (in the cases we 
consider there is a spin-flip symmetry). Thus +rap are the pure phase equi- 
librium magnetizations. The analysis of the distribution of mA away from 
+rap is a large-deviation problem. Remarkably, in Ising systems in d - - 2  
dimensions and nearest neighbor ferromagnetic interactions there is a com- 
plete answer for all temperatures below the critical one. 1.5'271 The proba- 
bility that mA is "close" to a value m in ( - r a p ,  m/~) is found to vanish as 
e x p ( - c  1OAI) when IAI ~ + ~ .  The rate c comes from the solution (Wulff 
construction) of a variational problem involving (1.1) whose validity is an 
indirect consequence of the proof. 
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A direct proof of (1.1) is the true goal of this paper. First of all we 
need a well-defined setting of the problem which involves an interpretation 
of (1.1) as a functional in an appropriate function space. To this end it is 
better to regard F as a function of the magnetization profile that has 27 as 
its interface. We thus consider functions u(r), r e  ~-, with only two values 
_+mp. Then Z" is defined as the boundary of the set {r~3- :  u( r )=  +mp}. 
The minimal requirement on u for ( 1.1 ) to hold is that it should be possible 
to associate an area to the corresponding _r and that this should be finite. 
A general notion of area has been developed in "geometric measure theory" 
(see, for instance, refs. 6, 17, 18, 20, and 30), where it is defined as a func- 
tional P(u) with u (in our context) in BV(Y-; {+me}).  Then P(u) 
generalizes the classical notion of area of the interface of u and it is finite 
on each element of BV(~--; { +mp} ). On such a space the formula (1.1) is 
well defined with d2(r) the Hausdorff measure on "the reduced boundary" 
of Z, ( ~  provided sp(n) is measurable on the unit sphere of R d. 

While smooth bounded surfaces are included, in this class there are 
also highly irregular surfaces still with finite area. The choice of the domain 
where F is defined therefore has important implications in the derivation of 
(1.1), namely whether it is the area the only factor that determines the 
probability of an interface or there are other features such as the regularity 
of the surface which play an effective role. We will see that for Ising systems 
with Kac potentials the area alone determines the probability of an inter- 
face. 

The next question concerns the quantity which should play the statisti- 
cal mechanical role of the functional (1.1). Since u(r) is a "macroscopic 
density magnetization profile," the relevant quantity is the Gibbsian prob- 
ability of "recognizing such a profile" out of the actual spin configurations. 
The region A where the Ising spins are defined should then be scaled down 
to a fixed region to be identified with the above unit torus Y-- where spin 
configurations will be represented in terms of piecewise constant functions 
with values _+ 1; precise definitions are given in the next section. The Gibbs 
measures can then be regarded as probabilities on L ~ 1 7 6  [ - 1 ,  1 ]) and we 
are interested in computing the probability of sets A~(u) which are 
neighborhoods of u s B V(Y--; { +_ mp} ) ( in the L I(~-; [ - 1, 1 ] )-topology, as 
justified in the next section) with "width" determined by (, a positive 
parameter. Calling Mp.,.~(u) such a probability, where fl is the inverse 
temperature (of the Gibbs measure) and e the scaling parameter which 
gives the ratio between microscopic and macroscopic units, the quantity 
that approximates F in (1.1) should then be 

~ d -  1 

fl logMp.~.~(u) (1.3) 
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in the limit where first e ~ 0 + (thermodynamic limit) and then ( ~  0 +, i.e., 
the limit of high accuracy in the recognition of u. The quantity e d -  1 scales 
as a surface and plays the role of IOAI- ~ in the previous considerations. 

The quantity (1.3) has to be compared with the previous large-devia- 
tion probabilities and in fact F in (I.1) should be regarded as the rate 
function of large deviations associated with (1.3). It is, however, convenient 
at this point to particularize the discussion to the case of the Ising 
ferromagnetic Kac potentials ~ that we actually study in this paper. 
Here we have another parameter y >  0 that determines the range of the 
interaction. One is interested in the limit as y--* 0 +, where the range 
of the interaction diverges as ),-1, as recalled in the next section. We will 
study the simultaneous limit where e ~ 0  § (thermodynamic limit) and 
? ~ 0  § (scaling limit) and for technical reasons we will ask for a strict 
relation between the two. One of the features of the Kac potentials is 
that the large-deviation rate functional as ? ~ 0 § has an explicit form in 
terms of the nonlocal van der Waals functional that we call F~(u), 

u e L~ [ -  1, 1 ]) (fl is not made explicit here). According to this state- 
ment we can replace (in the limit when e and y vanish) (1.3) by 

inf F~(v) (1.4) 
v~ A~(u) 

The validity of (1.1) is then in this setup just the statement that F(u)  in 
(I.1) is the limit of (1.4) as e ~ 0  + and then ( ~ 0  +, which on the other 
hand is exactly the setting of De Giorgi's notion of F-convergence (of F, 
to F). (4"7) 

We actually prove (see Theorem2.5) that F~ F-converges to the 
perimeter functional P(u) ,  up to the multiplicative factor sp, which is then 
the isotropic surface tension of the system. In agreement with the van der 
Waals theory [see (2.22)], sp can be expressed as the free energy of the 
instanton solution of a nonlocal Euler-Lagrange equation for the func- 
tional F~. 

Let us briefly describe the content of the paper. In Section 2 we state 
the main definitions and results; we also outline the proofs, whose details 
are reported in the next two sections and in the appendices. In Section 3 we 
show how the probability estimates involving the Gibbs measures are 
expressed in terms of the functional F, and the validity of (1.1) related to 
a problem of F-convergence, which is then solved in Section 4; more 
technical problems are left to the appendices. As the relation with the 
F-convergence of {F~} may have an interest in its own right, we have 
isolated the whole argument: the problem of F-convergence is formulated 
at the end of Section 2 and studied in Section 4, which can be read inde- 
pendently of Section 3. 
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In a for thcoming paper,  l'~ the above results are extended to include an 
analysis of the Wulff and other constrained variat ional  problems. It is also 
proved that  the interfaces with infinite area have superexponentially small 
probability.  

2. M A I N  R E S U L T S  

We start by recalling the notion of Ising systems with Kac  potentials. 
While our  nota t ion may  not be the most  usual (see the Remarks  after 
Definition 2.1d below), this is going to be the most  convenient setup for 
our analysis. We split the main definition into several parts. 

Def in i t ion  2 .1a .  Partitions of ~,1. For  any k e 7/, .~(k) denotes the 
part i t ion of R d into the d-dimensional cubes 

{ r = ( r l  ..... rd)~Rd:2--kxi<~ri<2--k(xi+l);xi~7/,i=l ..... d} (2.1) 

The a toms of ~(k) are denoted by C ~). The a tom c~k)(r) is the unique 
a tom of ~lk) that  contains the point r. A function feL~ d) is .~lk). 
measurable  if it is constant  on the a toms of .~k~ and a set A c R d is 
.~kLmeasurable  if its characteristic function IA is .~(k)-measurable. 

Def in i t ion  2 .1b .  Spin configurations. We denote by 7 a param-  
eter that  takes values in {2 -k, k ~  t~}. Let 7 = 2  -k,, k r ~  N, and e -~ ~ ~;  we 
then say that  try, is an Ising spin configuration with mesh 7 and period e -  
if ay~L~ { ___ 1} ), if try is .~(k')-measurable, and if 

ay(r)=ar(r') whenever ri-r~=e-lx~ where xi~Z for i = 1  ..... d 

Denot ing by ~ the torus in II~ d of period e -~, we will identify a spin 
configuration on ~ with its e -Lpe r iod i c  extension to R d. 

The values of  a~. in each a tom of _~tk~) are the spins of  the configura- 
tion at,. 

Def in i t ion  2 .1c .  Energy. The interaction strength J(Ir l)  is a non- 
negative c#o~ function of r e  I~ a, supported in the unit ball, with s u p { s > 0 :  
J(s) > 0} = 1 and such that  

~R drJ(Irl) = 1 (2.2) 
d 

Let A be a bounded measurable region in IW / and m~L'~(A; f - 1, 1]). The 
energy of m in A is defined as 

H(m; .4):= 1 fa dr fA dr' J(lr-r'l)m(r)m(r') (2.3) 
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I fA is a torus, then I r -r ' l  in (2.3) is the distance between r and r' in the 
torus. 

The ferromagnetic condition J~> 0 will be essential in most of the 
proofs. 

De f in i t i on  2.1d.  Gibbs measure. The Gibbs measure on the torus 
~-~,, with Kac potential J(lrl ), scaling parameter 7, and inverse temperature 
fl, is the probability l~p.~,,~ on the space of spin configurations on ~ with 
mesh )J defined as 

1 
l~p.y.~(ay) := exp[ --fly-dH(ay; ~-~) ] (2.4) 

Z#,r,~ 
where 

Zl;.y,~ := ~ exp[ -fly-all(at; .Y-f~) ] (2.5) 
o- 7 

is the partition function. 

Remarks. Calling 

S(x) := %,(yx), 

and T, := {x~Zd: 7X~-~,}, we have 

x ~ Z  a 

J~,(x, y) :=y-d f dr fc dr' J(l,'-r'l) (2.7) 
dclk.el(),x) Ik. ( ) , y )  

Observe that the coefficient c, drops from the expression for the Gibbs 
measure and it is therefore irrelevant. Then, using the variables S(x), we 
find that the energy and the Gibbs formula take the usual form; in par- 
ticular, neglecting the variation of J in the integral in (2.7), we get 

J~,(x, y) ~ / i j ( y  Ix - Yl) (2.8) 

which has the typical scaling properties of the original Kac potential. To 
simplify the notation we have directly defined the model with the inter- 
action (2.7), but the results in this paper hold as well when the energy is 
given by (2.6) with (2.8) holding as an equality. 

where c~ (which takes into account the sum over x = y) is independent of 
ay, and, recalling ), = 2-k~, 

?-aH(a~ . ;~ )=- �89  y" Jy(x, y) S ( x ) S ( y ) + c ,  (2.6) 
x,)'~T~ 

xg:y  
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The system in Definition 2.1 is thus included in the class introduced by 
Kac to model the van der Waals theory of phase transition, which is in fact 
derived by taking the limit y ~ 0+. 122~ The physically correct procedure 
would be to first let e -  m --* + oo and then y ---, 0 § but we will instead study 
the much simpler problem where e -  ~ diverges "not too fast" as y ~ 0 § see 
(2.10) below. As we shall see, even in this regime there are interesting 
phenomena. 

D e f i n i t i o n  2.1e.  Choice of parameters. In the sequel we fix f l>  1 
and, setting 

1 
0<0c<  (2.9) 

d + l  

we choose 

e - '  := [y - ' ]  (2.10) 

where [ a ]  denotes the integer part of a. 

The system with fl > 1 has a phase transition when 7 ~ 0 +, that is, in 
the Lebowitz-Penrose limitY 3~ There are two equilibrium magnetizations, 
+m#,  where 

mp = tanh{flmp}, mp>O (2.11) 

(which has a solution 0 < rap< 1 if and only if f l>  1). The equilibrium 
magnetizations are defined in ref. 23 in terms of the partition function. We 
will extend the result by showing that ___rap are also the magnetization den- 
sities of the typical Gibbs spin configurations. We will in fact prove in 
Theorem 2.3 that the probability of the configurations which have either 
magnetization m/j or - r a p  converges in the limit y ~ 0 + to 1. We will then 
investigate the residual configurations, in particular those which have an 
interface. Since by Theorem 2.3 they have vanishing probability, this will be 
a problem of large deviations, but, as we shall see [Eq. (2.16)], with an 
"anomalous normalization." 

For any r e R a and R > 0 we set BR(r) = {r' e R'/: Ir -- r'l ~< R} and use 
the shorthand notation 

1 IB~t,~ dr' f(r') (2.12) ~s~c,~ dr' f(r') IBR(r)I 
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Definit ion 2.2. Given - 1  <m~< 1, R > 0 ,  and ( > 0 ,  we say that a 
spin configuration a r on ~ has magnetization constantly equal to m with 
accuracy (R, () if 

~dlv_ dr m--~BR,r dr' ar(r')l<~ (2.13) 

and write a>,~ ~'~.r r if ar satisfies (2.13) with m = ___m a. 

It is clearly necessary to define the magnetization of a spin configura- 
tion via an averaging procedure, because the spins have only values _ 1. 
There is, however, some degree of arbitrariness about the size of the 
averaging region; we have chosen regions with finite volumes (in interac- 
tion range units). Observe that (2.13) does not imply that the averages are 
uniformly close to m, but that this only happens in a large fraction of the 
whole volume. Such a weaker condition is more likely to extend to systems 
where the condition that 0c in (2.9) is small is either relaxed or dropped. 

In the next section we will prove the following result. 

T h e o r e m  2.3. Let oc, e be as in (2.9), (2.10), respectively, and let 
R > 0. Then there is ff~, --, 0 + as y ~ 0 + so that 

lime+ lta.~,.E(#~.C~.y W dj~,c;..y) = 1 (2.14) 

In the complement of ~.c,,~.w~;r 7, there are configurations that 
describe coexistence of phases and int'er'l~aces; to see this we need to 
generalize Definition 2.2, replacing the number m by a function m(.). 
Denoting by #- the unit torus in R a and by L~ [ -  1, 1 ] ) the space of 
integrable functions on #- with values in [ -  1, 1 ], we set: 

Definit ion 2.4. Let m ~ L ~ ( # - ;  [ - 1 , 1 ] )  and R , ~ e R  +. We say 
that a spin configuration a t, on ~ has magnetization m with accuracy 
(R, ~) i f  ave~R.r where 

~'R.c.~.(m)={m*EL~(~; [ - -1 ,  1]): 

idly_dr ~BR, r dr'(m(er')--m*(r')) <() (2.15) 

Let m~L~ { +ma});  we then call the regions {r~#- :  
re(r)= +ma} the + phases of m and define the interface of m as the 
boundary of the plus phase. On physical grounds the cost in free energy to 
create an interface is proportional to its area, the proportionality constant 
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being the surface tension. Usually the surface tension is defined by impos- 
ing plus and minus conditions at the top and the bottom of a rectangular 
region (see, for instance, ref. 2), so that the interface is (on the average) 
fiat and parallel to the bases of the rectangle. We will prove that the free 
energy is still proportional to the area times the surface tension even when 
the surface is not regular. Let P(m) be the perimeter functional on 
BV(3-;  { +rap}) (the functions of bounded variation on Y-- with values 
___rap) that defines the area of the plus phase of m; see Appendix D. Then: 

Theorem 2.5. There is sp>0,  given in (2.22) below, so that the 
following holds. For all u E B V(J-; { ___ rap}) and all R > 0 there is ff~, ~ 0 + 
a s 7 ~ 0  + so that 

lim - 7 %  d- 1 log[/lp.~.,~(~n.r = flspP(u) (2.16) 
), ~ 0 + 

Remarks. The number of spins in a spin configuration is propor- 
tional to (Te) -a. Then, "in normal conditions," the large-deviation nor- 
malization factor is (ye) a. In this sense the normalization in (2.16) is 
anomalous; the anomaly is due to the presence of a phase transition. Since 
there are two equilibrium magnetization values, ___rap, it is possible to have 
a nonconstant profile with equilibrium magnetization at all points: such 
profiles only cost a surface price. To get the prefactor 7% d-  ' recall that the 
surfaces scale like et-a ,  as Y '~=e- l~  --. As shown in the sequel, the thick- 
ness of the interface (in ~-~) is of the order of unity, and thus the volume 
of the region around the interface scales also as e~-a. The number of spins 
in a region is proportional to the volume of the region times 7-a; we thus 
obtain 7-% ~ -a, which is the inverse of the prefactor in (2.16). 

To give an expression for sp we need several intermediate definitions. 
We start by recalling a result proved in ref. 14: 

Theorem 2.6. There is a unique function rh: R ~  [ - 1 ,  1] such 
that n~(0) = 0, 

lim inf rh(s) > 0, lim sup th(s) < 0 

and such that for all s E 

rh(s) = tanh{flJ* r~(s)} (2.17) 

where �9 denotes convolution and for every s e R 

Y(s) := J'R"-' dr J((s z + r2) ~/2) (2.18) 

8 2 2 / 8 2 / 3 - 4 - 1 0  
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Moreover, n~ecg~ it is antisymmetric, strictly increasing, and with 
asymptotic values at +__ oo equal to +mp, to which it converges exponen- 
tially fast. 

As we shall see, th, called the instanton, describes the magnetization 
pattern at the interface. We next define the excess free energy functional ~ :  

Definition 2.7. Given a measurable set A c R  d and m e  
L~176 [ - 1 ,  1]), we define the map ~ (m;  A) with values in [0, +o o ]  as 

~ (m;  A) := IA dr [f(m(r)) - - f (mp)]  

+�88215 (2.19) 

where, if s e [ -  1, 1 ], f(s) and i(s) are the free energy and the entropy 
density, namely 

1 f(s) := --~ s 2 --fl-li(s) (2.20) 

i ( s ) . - l + S l o g / l + s \  l--s ( ~ _ f )  2 (2.21) 

If A is a torus, Ir-r'l is the distance between r and r' in the torus. We 
further set ~ ( m ) : =  ~ (m;  R a) and ~ ( r n ) : =  ~-(m; ~ ) .  

We call ~ ( m )  the d =  1 version of ~-(m) with J replaced by J; see 
(2.18). Together with Theorem 2.5 we shall prove that 

sp= ~(r~)  (2.22) 

The proof of Theorem 2.5 starts from a large-deviation estimate for the 
Gibbs measure. Because of the assumption on the size of the region, we are 
essentially reduced to the case considered by Eisele and Ellis, 1~6) and the 
large-deviation rate function is the functional ~ .  

Given mEL~(~; [ --1, 1]), we set 

u(r):=m(e-lr), r ~ J -  

and define the functional 

F,(u) :=e  a-  l~ (m)  (2.23) 
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on L ~ 1 7 6  [ - -1 ,  1]); thus 

F~(u) = e  -x I~- dr [f(u(r)) - - f (mp)]  

+4f~• (2.24) 

where 

J~(Irl) : = e - a j ( ~ - t  Irt) (2.25) 

In the next section we will prove that Theorem 2.5 follows by proving that 
{F,} F-converges to F(u):=spP(u) as e ~  0 § This means that given any 
u ~ BY/(#-; { +rap} ), the following hold: 

1. For any family {u~}_~L~(~'--;[--1,1]) that converges in 
L](#-; [ - -1 ,  1]) to u as ~---, 0 + we have 

lim inf F~(u,) >i F(u) (2.26) 
~ 0  + 

. There exists a sequence {u,} c L~(~--; [ - m p ,  mp]) that converges 
in L](~-; [ - 1 ,  1]) to u as e ~ 0  § and such that 

lim F,(u,)=F(u) (2.27) 
c ~ O  + 

Since Jr in (2.25) is an approximated delta function, it might look 
reasonable to replace the second integral in (2.24) by 

D-4 drlVul'-, where D : =  drJ(Irl)r'- (2.28) 
Ra 

We then obtain the classical exam~_le of functionals that F-converge to 
P(u) (modulo the constant factor ~/D/2), as conjectured by De Giorgi and 
Franzoni in 1975171 and proved by Modica and Mortola. t261 However, the 
constant is not the surface tension of our model! 

In Section 4 we will prove that {F,} F-converges to spP(u). 

3. REDUCTIC)N TO A V A R I A T I O N A L  PRINCIPLE 

In the first part of this section we prove a relation between the Gibbs 
probability ltp.r,~ and the functional o~(m) by showing that, for small 7, 
/zp.~. ~ is well approximated by 

gtp. r. ~(. ) .~ exp [ - f17 - a~( .  ) ] (3.1) 
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The sense in which (3.1) holds is specified in Lemma 3.2 below. We can 
already say, however, that (3.1) will not refer to single-spin configurations, 
for which it is not valid, but rather to a coarse-grained version of the con- 
figuration itself that we will define in the sequel. 

In the second part of the section we will see, with the help of (3.1), 
that the problem of computing a probability may be reduced to finding 
minima of the functional ~ .  In this way we will relate the proof of 
Theorem 2.5 to the F-convergence problem stated at the end of Section 2. 

We begin with a few definitions aimed at introducing the basic notion 
of coarse-grained configurations. 

3.1. The Partition ~r 

Recalling the definition of 0c in (2.9), we choose 6 > 0 so that 

doc <~  < 1 - - ~  (3.2) 

and call -~r the partition .~(,) of Definition 2.1a with k=n~. and 

[ 6 log(y- ' ) ]  
nr:=[_ ~ j ,  sothat  y~<2-"~ '<2y a (3.3) 

3.2. The Coarse-Grained Configurations 

Recalling that C(k)(r) is the atom of -~(~) that contains r, we let n (k~ be 
the map from L ~ ( R  d) into itself defined by 

1 
n~kf(r) : = 1 - - ~  ~c,k,i,. ~ dr' f ( r ' )  (3.4) 

We then set ny :=n  ~'~), s (e) :=n(k)ar and s r :=n~,a r, where a r is a spin 
configuration (Definition 2.1b); s~, will be called a coarse-grained (spin) 
configuration. 

3.3. Weights and Energies of the Coarse-Grained (Spin) 
Configurations 

The weight W(sr) of the coarse-grained configuration s r is the number 
of spin configurations ay such that n~.a r = s r. 

We denote by H,( . ) :=H( . ;~-~) ;  see (2.3). The energy of a coarse- 
grained configuration s r is then denoted by H,(s~,)= H(s~,; #~). 
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We finally write, by an abuse of notation, 

/~p,~,,Asy) =/~:.~,.~({ay: ~,a~, = s~} ) (3.5) 

namely pa.~,~(s;,) is the probability of all spin configurations a r whose 
coarse-grained image is s r. 

In the next lemma we relate the energy and the weight of the coarse- 
grained configurations, respectively, to the original energy of the spin con- 
figurations and to the entropy functional L The latter is defined, for any 
given bounded measurable region A in •a, as the functional I(m; A) on 
L~(A; [ - -1 ,  1]): 

I(m; A):=fA dr i(m(r) ) (3.6) 

with i(m) as in (2.21). We set I~(m):= I(m; ~-~,). 

L e m m a  3.1. There are positive constants c~, c2, c3, and Ca such 
that for all spin configurations a r, all r ~ •a, and all R > 0 

~sR,r, dr' tr'(r')-~s~ R(r, dr' zr~,tr~,(r') I <. c, R-~7 a (3.7) 

Moreover, 

IHAcL.) - H,(~:~,)I ~< c27% -u (3.8) 

and for all coarse-grained configurations s~, 

[log W(s;,)--7-dlAsr)l ~< c3()'e)-a) '2~1 -a~d Iog(? -I ) (3.9) 

Finally, denoting by N~, the total number of distinct coarse-grained con- 
figurations s~,, we have 

log N~, ~< C4():e ) --d ~(1 --d)d log(y- I) (3.10) 

We prove the lemma in Appendix A. 
The functionals I~ and He are related to ~ in a simple way: by 

expanding the ~quare in the last term of (2.19), recalling the definition 
(2.20) of f (m) ,  and using (2.2), we get 

~ ( m )  = [ H~(m)- f l - ' I~ (m) ]  - [ H~(ffTp)- p -  Vo(rha)] 

where thp(r)-mp, r ~  (3.11) 

Then, as a corollary of Lemma 3.1, we have the following version of (3.1). 
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L e m m a  3.2. There is a constant C~ > 0  so that for any coarse- 
grained spin configuration s r 

[log/~p,y.~(sT) + fly-d~(sy)[ <~ Cl(Te)-d{y t~-a)dlog(y-I) +ya} (3.12) 

Proof. By (3.5) and (2.4) 

1 
/lp,~.~(sy) = y'. Zp.~,~ exp[ -flT-UH~(ay)] 

I tTG 7 ~ s 7 

where Zp, r. ~ denotes the partition function in the torus ~ .  Using (3.8), we 
write 

exp[ --fly-dH~(a,,) ] 
It? tT? ~ 8 7 

>1 ~ exp[-flY-aH,(sy)-flc2ya(ye) -a] 
~ ?  tY 7 ~ S? 

(and similarly for the upper bound). We call 

~ ,  = (ye) -d { C2ya + c3yt~ --O)d log(y-- l )} (3.13) 

and we get, using (3.9),  

exp{ --y-a[flH~(sr) - I~(sr) ] -- r 

~< ~ exp[ --fly-dHe(tTr)] ~<exp{--y-a[flH~(s r)-/~(sr)] +~'r} 

~:? ="? (3.14) 

Calling m/~.~ the closest number to m# which belongs to the range of st(r), 
we have 

[ma_ma, r [ <~ C5~(1 --~)d (3.15) 

and setting rhp, r(r)=m#, r, we have 

I[flH~(lha,~,)--I~(rha, r)]--[fln~(rh#)--I~(tha)]l <~c6(ye)-dy tl-'51a (3.16) 

Therefore, using the lower bound in (3.14), we obtain 

Z#.y,~ >i ~ exp[ --fly-dH~(ay)] 
7t?G 7 ~ rh~,? 

>~exp{ --y-d[flH~(~hp)--IArhp)] --~y--C6(Te)--dy ~l-6)d} (3.17) 
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Hence, recalling (3.11 ), we find 

log(/tp.~,,~(sy)) ~< --)P--dfl,~c(S~,)"F21,b~,+C6(?~)--d) J~l-'~la (3.18) 

For the upper bound we write 

Zp.~,.~= ~' ~' exp[ - f ly -aH~(~, ) ]  

~< Z exp{ --?-a[flH.(s~) - /~(sr)]  + ~b~} (3.19) 

Since for all s~, 

flH~(s,,) - I~(sr) >1 flH.(rhp) --/~(fflp) 

we get 

log Zp.r.. % -y-a[flH.(rfip) -/~(rhp) ] + ~Or + log N~, 

<~ --y-a[flH.(rhp) --/~(rhp) ] + ~k~, + c4(~e) -.i y~, -~)a log(? - i )  
(3.20) 

having used (3.10) in the last inequality. In conclusion, 

log(/~p.r.~(s~) ) 1> -?-afl~(s~) - 2~by - c4(?e) -d ?(] --~)d log(?--]) (3.21) 

The bounds (3.18) and (3.21) together with the obvious inequalities 

~(1 -a)d log(y- ' )  ~> y(l --a)d 

prove (3.12). The proof of the lemma is complete. II 

By using Lemma 3.2, it is easy to prove Theorem 2.3: 

Proof of  Thoorom 2.3. Recalling the definition (3.4) of 7r ~k), for any 
(* > 0 we set 

~r  {rre~ L~ [ - 1 ,  1]): 

there is r ~ R a such that I lTrtklm(r)l - mal/> (*} (3.22) 

~ =  {m ~L~176 [ - 1 ,  1]) c~ ~r 

there are r', r" ~ Rd such that InIk)m(r ') -m/~l < ( *  

and ]TrIk~m(r ") +mal <(*}  (3.23) 



758 Alberti e t  al. 

We need the following lemma: 

L e m m a .  Fo r  any k large enough and any (*  small enough there is 
a constant  c7 > 0 independent of  e such that  

inf ~ ( m )  i>c7 (3.24) 

Proof of the Lemma. Suppose m e a l .  Call C =  Ctk)(r) the cube in 
.~lk) that  contains the point  r appear ing in (3.22). We set 

Calling 

~* C I CI 
( :=5- '  ~:= 8 

A+ := { r~  C: Im(r)~mp[<~(}; Ao:=C\(A+uA_)  

we first consider the case when IAol > o~. Then there is a function x(()  > 0 
such that  

~(m) >1 f Ao dr If(re(r)) - - f ( m p ) ] / >  K(() oc 

When [Ao] ~<o~ we may  also suppose, without loss of generality, that  
]A + [/> ]A _ [. By definition 

~cdr m(r) < (mp-(*) [C[ 

hence, since m/> - I  on Ao, we find 

[A + ](m s -- () -- [Ao[ + [A _ [( - m  s - ()  < (ms - (*)  [C[ 

Substituting [C[ = [A+[ + IA_[ + [Ao[, we get 

]A [ (2mp-- (*  + ( ) >  [ A + [ ( ( * - ( ) - - 2  [Ao[ 

Since [A+I >_-([C[-00/2, we have 

>lCI-0c(_2~ = ~  Iclr ~r ICI 
2 IA_l 4 2 ~ - 8  - -  
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having supposed that mp + ( ~< 1. Then 

ICI 
IA+I>~IA_I~> 

16 

We can then conclude that in C there are two sets A_+, IA+I = If[ (/16, 
where m(r) is respectively close to +mp by at most (; moreover, by the 
isomorphism of Lebesgue measures, r there is a one-to-one map ~ from 
A+ onto A_ which preserves the Lebesgue measure. 

If I CI is small enough (i.e., k large), there is another cube C' in ~ and 
a > 0 such that J(lr-r'l)~> a for all r �9 C and r ' � 9  C'. We can then bound 

a dr [ m ( r ' ) -  m(r)] 2 ~(m) >~~ ~c dr' IA+~A_ 

We write the integral over r as 

A+ dr { [m(r') -re(r)] z + [m(r ')  - m(~(r))]  z 

>1 �89 f~+ dr [m(~(r)) - m ( r ) ]  2 

thus proving the bound (3.24) limited to m e d .  
If m �9 by definition it is not in d ;  then, without loss of generality, 

we may suppose that the closures of the two cubes of .~(k~ that contain r' 
and r" [see (3.23)] have nonempty intersection. We can then apply the 
same argument used for d and the lemma is proved. | 

We proceed with the proof of Theorem 2.3. Using (3.12), we have 

d u ) 

~< N~, exp{ - - ~ c T y - - d ~  - (?e) - -d  Cl[ya .~_ y(l--a)d log(y--')] } (3.25) 

which vanishes as y ~ 0 + because of (3.10) and (3.3). 
We have thus proved that the union of the two sets 

{.IsCk~(r)-mal <(*}, {IslY)(r)+mal <(*}  (3.26) 

has probability going to 1 as y---, 0 +, for any given k. 
On the other hand, similarly to (3.7), we have, for any r � 9  a and 

R > 0 ,  

3 [ dr' tL,(r')--fT dr' rr(k'ay(r ') ~< c sR- t2  -k (3.27) 
JB n(r) aBR(r) 
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Therefore, " Mk) + ff % is in the first set in (3.26), then a~, is in the set ~R.r of 
Definition 2.2 with ( = ( * + c s R - ~ 2  -k. Since a similar property holds for 
~-~.y, we conclude that the statement in Theorem 2.3 is verified for the 
special case when ff~, is equal to a constant independent of y. Because this 
holds for any value of the constant, by a diagonalization procedure we 
conclude that there is a sequence {(~,} infinitesimal as y--* 0 + for which the 
assertion remains true. The proof of Theorem 2.3 is thus completed. II 

In the remaining part of this section we will use Lemmas 3.1 and 3.2 
to reduce the proof of Theorem 2.5 to the F-convergence problem for the 
functionals F~ stated at the end of Section 2. 

Let 

m*(r) :=u*(er), r � 9  (3.28) 

where {u*} is the minimizing sequence in condition 2 for F-convergence. 
Let 

/ ,  

(~* := _1~-. dr lu~*(r) - u(r)l (3.29) 

(recall that e - I = [ ? - = ] )  and let R > 0 ;  we specify the sequence (~ in 
Theorem 2.5 as 

(7' := (* + el R - l y  ~ (3.30) 

where cj is defined in Lemma 3.1; see (3.7). The reason for this choice will 
become clear in the sequel. 

Observe that given ( and R positive and setting 

(+ :=~q-ctR-ly '~, thus (~? = ( *  (3.31) 

by (3.7) we have 

/ap.~.,( {rrrtr r �9 ~R,r ) <~/~p.r,.( { tr r �9 .~R.r r(m) } ) 

~</l#,y..( { 7r,,tr~, �9 ~R.r } ) (3.32) 

The Upper Bound. By (3.12) 

logE/~#.r,,( { cry �9 ~R,r } )] 

<~ _fly-d inf ~(sy) 
s7 ~ ~ g .  ~+. 7( m ) 

+logN~,+(ye)-a ct{yll-6~alog(y-t)+ y ~} (3.33) 
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We multiply both sides by 7aea-~ and let 7--*0 +. By (3.10) 

lim yaed- 1 log Ny = 0 
~ , ~ 0  + 

because 7~J-'~)ae-~=y~-'~la-~' and by (3.2), ( 1 - ~ ) d > d 0 ~ > ~ .  Similarly, 
the last term in (3.33) also vanishes, after having been multiplied by 7aea-~. 
Thus, supposing the validity of condition 1 of F-convergence, by (2.26) we 
get 

lim sup 7ae a-l log[/zp.r.~( { a~, ~ ~R.r )] ~< --flF(m) (3.34) 
y - * 0  + 

The Lower Bound. We use (3.12), as in the upper bound, to get 

logE/z#.r.~({ cry ~ ~R,r } )] 

>I --fly-d inf ~(sy)  
s,/e ~R.r 

-- (7e) -a  Cl{ y~' -a~a log(y-l)  + ya} (3.35) 

We have already seen in the proof of the upper bound that the last 
term in (3.35) multiplied by yaea-t vanishes as y--* 0 § We would like to 
use condition 2 of the F-convergence, (2.27), for the first term on the right- 
hand side of (3.35), but the minimizing sequence m* is not necessarily a 
coarse-grained configuration. However, by (3.11 ), we have 

~ ( m * )  = [HE(m*) -  f l-  ~/~(m*)] -- [ H~(rfia)- fl-~I~(rha) ] (3.36) 

Then, similarly to (3.8), 

7-a  IH~(m*) - H~(~ym*)l ~< c',_7'~(7e)-a (3.37) 

and, by the concavity of the entropy i(.) [see (2.21)], 

- l~(m*) >i -l~(nym*) (3.38) 

rc~.m* may not yet be a coarse-grained function, but, recalling (3.15), there 
is a coarse-grained function s*(r) such that 

sup Irc~,m*(r) - s*( r ) [  ~< c~y ~t -a~d (3.39) 

Since the minimizing sequence {m*} has values in [ - m  a, mp] (see the end 
of Section 4), we have 

IL(n~.m*) - It(s*)[ ~< c9(ye)-d y(l --6)d (3.40) 
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By the continuity of the energy H,(- ) we then get 

- d ~  . (3.41) y ~'~(m~ ) >>. y - a ~ ( s * )  - c',.y~(~,e) -a + Clo(ye) -'~ ~'~' -~'~ 

Thus, going back to the first term on the right-hand side of (3.35), we have 

_fl~ -d inf ~ ( s  r) 
s z e ~*R,r 

>1 _ f l y -a~ (m , )_c~yO(ye ) -a_Clo (ye ) -a~ . cJ -~a  (3.42) 

We multiply both sides by ~,%a-~ and let ?---,0 § Then by (3.42) and 
(2.27), 

lim inflog[lt~,~.~( {a~,~ ~R.r } )] >/ --flF(m) (3.43) 
) , ~ 0  + 

(3.43) and (3.34) prove (2.16), hence Theorem 2.5 is reduced to the proof 
of (2.26) and (2.27), namely to the F-convergence of {F~} to F. 

4. r - C O N V E R G E N C E  

In this section we prove that the functionals F~ converge to F in the 
sense of F-convergence; see (2.26) and (2.27). While the proof of part 2 of 
F-convergence is standard, the proof of part 1 is less typical, due to the 
nonlocal structure of our functionals F~. As discussed at the end of 
Section 2, a local version of F, is the functional 

M~(u) := e IR~ drlVul'-+l~R-e ,, dew(u) 

where, for simplicity, we set w ( s ) : = ( l - s 2 )  "-. The proof of the 
F-convergence of {M~}, considered by Modica and Mortola 126~ and 
Modica, ~zS~ exploits the following elementary inequality 

M~(u) >>, 2 I~ dr IVul[ w(u)] t/2 =: L(u) (4.1) 

where e has disappeared from the right-hand side. Then the family {L~}, 
L~ = L, F-converges to the lower semicontinuous envelope of the functional 
L. On the other hand, the minimizing sequence {u~} realizes, roughly 
speaking, the equipartition of the energy, i.e., 

E IVu~l -~ = 1  w(uO 

Hence M,(u,) = L(u,). 
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In our case the inequality similar to (4.1) yields, for d = l ,  
J =  ll,.Ea: vl~ll/2 and with [ f ( s ) - f (mp)]  replaced by w(s), 

F~(u)~ ~ ~, dr ( 1  [r+~ __ u ( r , ) [2 )  112 112 _ .  L , ( u )  \~Jr-,dr' lu(r) [w(u)] - .  

However the F-limit of { L~} (which corresponds in the previous case to the 
lower semicontinuous envelope of L) vanishes. Indeed, let us consider 
u := 1 on [0, 1] and u := - 1  elsewhere and choose u~ : = u  for all e. Then 
L~(u~) = 0 for all e, hence its limit vanishes. 

Thus inequality (4.1) gives a trivial bound in our case and a different 
approach is required. The F-convergence of some nonlocal functionals has 
also been considered recently by Jost. t2~ 

After these introductory remarks we begin the proofs. We need some 
notation. Recall that given a set E c R d, l e  denotes the characteristic func- 
tion of E, i.e., 1E(x)=  1 if x e E  and l e ( x ) = 0  otherwise. We call R =  
B x [ - h ,  hi  c J a parallelepiped in ~- of height 2h and middle section B 
[which is supposed in turn to be a paralMepiped in R d - '  with 2 ( d - 1 )  
faces]. Thus B divides R into two parts that we call R +- and, according to 
this choice, we set Xn : = m p ( l n + -  1R-). 

4.1. Proof  of Cond i t ion  1 of F -Convergence  

Theorem 4.1.  Let ueBV(~'-; { +_m/j}) and let {u,} c L ~ ( 3 - ;  [-1, 1]) 
be a sequence converging to u in L~(.Y -) as e--*O +. Then 

lim inf F.(u.) >/spP(u) 
c ~ 0  + 

Proof. Let u and u, be as in the statement of the proposition. In 
Appendix D we prove that for any ( '  > 0 there are n disjoint parallelepipeds 
R~ ..... R,, with bases [ ( d -  1)-dimensional parallelepipeds] Bl ..... B,,, 
respectively, and equal height 2h, so that 

1" IR k --P(u) hi21.~ i dr IXRi--I, ll <~t ,  i= 1 IBil <~" (4.2) 

By Proposition 4.2 below there exists an absolute constant c > 0 such that 
for any ~ > 0 

E' I* 

liminfF.(u~;R,)>~(slj-c()lB, l - - [ - z | d r l x R , - u  1, i = 1  ..... n (4.3) 
r ~ dRi 
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>- " F~(u,; R~). We then have, in view of (4.2), By (2.24) we have F,(u~)~.Y.~: ] 

lim infF~(u,) >1 ~ lim infF~(u~; R,.) 
e ~ 0 +  i = l  e ~ 0 +  

/> (sp- c() IB, I - ~ dr I z~ , -  ul 
i = l  i = 1  i 

>~ s/jP(u) - c  ~ + 0( ( )  + 0(( ' )  

Taking ~' := (2 and observing that the previous inequality holds for any 
( >  0, the proof of the proposition is concluded, i 

P r o p o s i t i o n  4.2. There is a constant c > 0  so that the following 
holds. Let R c ~- be a parallelepiped with basis B and height 2h. If {u~} 
L~(~--; [ - 1 ,  1]) converges in LI(~ -)  to ueBV(~--; { _+m#} ), then for any 
( > 0  

c F 

lim~_o+inf F~(u~; R) >1 (s/j - c() IBI - h( JR dr Ix~ - /'/I (4.4) 

Before proving this proposition we introduce some definitions which 
shall be useful in the sequel. 

Recalling Definition 2.1a, we consider the partition .~(-~ of R d into 
cubes D of side 2 and denote by D(r) the cube D ~ 3 ~ - ~ that contains the 
point r. Given D~.,~ t-~j, we define the height )~(D) of D as 2(D)=2n,  
n e Z, if 2n is the smallest value of the coordinate rd of the points r e D. Let 
R =  B x  [ - h ,  h], R~ :=e-~R c~-~ : = e - ] ~  --, B~ :=e- lB,  R~ : = e - I R  • For 
simplicity we suppose that R~ is .~t-~)_measurable; see Definition 2.1a. 

For any m E L~(R, ;  [ - rap,  rap] ), any positive integer k, and ( >  0, we 
define the function r/= r/,,,.k. r as 

fl-- if n ~ k ) m ~ m p - - ( o n D ( r )  
q(r) := 1 if n(*)m<~ - - m p + ( o n  D(r) 

otherwise 

(4.5) 

where ~k)is  defined in (3.4). 
We introduce now the important notion of cluster; see also Fig. 1. 

Definit ion 4.3. Given meL~ [ - 1 ,  1]), a cluster ~ = D ( m )  is 
a maximal .-connected union of cubes in R, + where i1(. ) < l (two cubes are 
.-connected if their closures have nonempty intersection). 



Surface Tension in Ising Systems with Kac Potentials 765 

s h 

2 

r d D ~ L  ") 11<1 

+ 
R ~  

/ 

/ 
/ 

D ~ L *  
/ 

/ \1 . R d-! / \ 
D �9 L ~~ \ L* De Q ~'> 

Fig. 1. The  cubes D e . ~ -  ~ c~ R + where t! < I. There are three clusters: the one on the upper  
left is in L, ~ the other  two in L/'(~ the one on the bo t tom left is in L/'~~ the other  one 
in c ~ ,  as its height  exceeds e-th/2. 

~-1 h 

~-1 h 

2 

r~ R + E / 

D ~ L *  
(2) 

m ~  = m ~  

,. R d-I 

Fig. 2. A cluster P, eL/'*(mC~.~)). ~ is divided into three parts,  I, II, and  Ili. The  shadowed 
region, II, is the minimal  section of ~ .  The  modification m{~ 2~ of m(~ ~ is equal  everywhere to 
m~ ~ except in II, where it has value m/y; thus  tl,/Z,.k.c= I on II, hence III e L/'(I}(m~ 2~) and 
l e  .Pl~ but  Ir Le*(mt~2)), which is thus  empty. 
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Leo= LeO(m ) is the set of clusters in R + which have nonempty inter- 
section with the basis B~ of R~. The set Le]= Le~(m) collects the others. 

Given a cluster ~ ,  we define its height 2(9)  as 

).(~) := max{ 2(D): O ~ 9}  

and, for any even n, its section B(n; 2) at height n as 

B(n; ~):= {D o N :  2 (D)=n}  (4.6) 

Calling 

e-lh 
n* := (4.7) 

2 

(having supposed for simplicity that e-]h~2 is even), we define 

Le* = Le*(m) := {9  ~ Le~ ).(9) 1> n*} 

The minimal section S(~)  of ~ ~ Le* (see Fig. 2) is defined after setting 

b ( ~ ) : =  min IB(n,~)] 
n even  

0 < n ~ < n *  

n ~ := min{n even, 0 < n <~n*, IB(n, 9)[  = b(~)} 

a s  

S(2)  :=B(n ~ 2 )  (4.8) 

Finally, the symbols c, c' will denote absolute positive constants that 
may change from line to line. 

Proof of Proposition 4.2. Set 

m~(r) := u~(er), re(r) :=u(er), r ~  (4.9) 

We will prove the proposition after many successive modifications of the 
function m,, each one either decreasing ~, or increasing it by a "controlled" 
quantity. The first step is very simple; we just take 

~'+mp if m~(r)>~mp, resp., m~(r)<~-mp 
ml"l)(r) := {m,(r) otherwise 

Then, obviously, o~(m~) >~ ~(m(, I )). 
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Modulo rotation and reflection of the axes, we may suppose that the 
basis of R~ is contained in the coordinate hyperplane {rd= 0}, rd denoting 
the last coordinate of r in R d, and that R{  c {rd> 0}. 

We next modify rn[ ~) in R~ + (the modification in R~- is similar and 
done later) by cutting the clusters in ~*(rnt~ ~)) at their minimal section (see 
Fig. 2). The clusters are now defined by means of the function r/,,[, k.r see 
(4.5). Let 

ml2):={mp on S(~),~e.ocf*(m~ 1)) 
ml~ 11 elsewhere on R~ 

Then 

m ( 2 ) .  : (m~l);  R~)>~'( ~ , R~)--c ~. IS(~)l 
~ '  ~ .L,~ *( m l  1)) 

(4.10) 

We shall see at the end of the proof of this proposition that the cost of this 
substitution, that is, the last term in (4.10), can be controlled in terms of 
the LI(R) norm of xR-u~.  

By construction, , t2) &o ( m ~ ) =  ~ ,  so that the "dangerous clusters" that 
intersect the basis of R~, i.e., those in ~~ are all "low," in the sense 
that they do not reach the height n*, which is half of the total height of 

(2) into a func- R~. We next apply Theorem B.2 of Appendix B to modify m~ 
tion m 13) which, as we shall see, is positive on the clusters of ~ ( m ( 2 h  - - c  , x e J ,  

where instead rn~ z~ may be negative: the proof exploits the fact that by 
definition all the clusters of ~ ( r n ~  2)) are surrounded by cubes where 
I1(-) = 1. The precise statement can be found in Theorem B.2, which we 
apply in the present context with A, / ' ,  and A defined as follows: 

A := U {~: ~ ~'L'q'(m~2))} 

/ " :=  {D ~,.~l-l) n R+: D ~ A  = ~ , / ) h A  # ~ }  

A := R . \ ( z / u / 3  

The parameters ( and k of Theorem B.2 are the same parameters as in 
the definition of the functions r/ in (4.5); l is a number in (0, 1) and the 
sequence {Ok} [defined in (B.7)] is actually independent of e (see the 
Remark at the end of the proof of Lemma B.1) and tends to 0 as k ~ +oo; 
finally we recall that 0 < 0 := ( +  Ck < mp. We choose ( and k so that 
O=~ +Ck <~m#/4. 

822/82/3--4-li 
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Fig. 3. ~m(m~3') = Aa*(m~3')=O; therefore q= 1 on {2(D)~>n* +4}. In particular, q= I 
on the level 2(D) = n* + 4, which is shaded. While the averages are rtkm~ 3~ >1 mp -- 0 above this 
level, this may not be so point by point. However, for the modification m~ 4~ of ml, 3~, 
rn~4~>~mp-O on {2(D)>n* +4}. 

Since m~ 2) satisfies condition (B.4), i.e., ~ztk)m~ 2) ~ > m p - (  for all r E r', 
then, by Theorem B.2, there exists m~ 31 .=  tme n,o on RE with the following 
properties: 

1. ~ t m  ~ 2 ) ' ,  ~ , R,,~ >1 o~(mle3); RE). 

2. m~e 3) >_-m~ z) on R e, and m~,3)(r)=m~2~(r) for all r e R, at distance 
not smaller than 1 from ,4. 

3. m~ 3) >/rap-- 0 on A. 

By construction, - m p  ~< m~e 3) ~< mp, ~ * ( m ~  3)) = ~ ,  and rn~ 3) >i m p -  0 
on all clusters N with N c~ B e = ~ where q,,~-'Lk.r < 1 (i.e., where m(, 21 is "far" 
from the value rap). 

We redefine the clusters [see (4.5)] for rn~2 ~ with ( replaced by 0, i.e., 
by means of  the function t/,,~3Lk.O. By an abuse of  notat ion the new clusters 
are denoted by the same symbols as the old ones and we also denote 0 
again by (. By construction, if ~ E L~~176 then B(n, N) = ~ for n > n*; 
see (4.6) for notation�9 

We now modify "e-131 into mel4) in such a way that m ~ 4 ) > ~ m # - O  on 
all D e . ~  ~-a) with 2 ( D ) > ~ n * + 4 ;  see Fig. 3. Precisely, we apply again 
Theorem B.2 with ,4, F, and A defined as follows: 

A :=  {D ~.~(-i)  o R + :  2(D) >_-n* + 4 }  

F : =  { D e , . ~ r  2(D) = n *  + 2 }  

A :=  R, \ ( '4  w F) 
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[note that q.,~,'-~,k.r ) = 1 on F, so that m" ~(2) satisfies condition (B.4)]. Then 
by Theorem B.2 there exists m(e 4) on R. with the following properties: 

1. ._~(m(E 3), R e ) / >  o~-(m(c4); Re ) .  

~ ( 4 )  (3) 2. ,,,,"~(4)'>'-(3),..,,,, on Re, and '"e =me on all D with 2 ( D ) < n * + 2 .  

3. m~4)>~m#-O on A, i.e., on all D with 2(D)~>n*+4.  

We conclude this first part of the proof of Proposition 4.2 by intro- 
ducing the function m(~ 5), obtained by repeating (with opposite sign) the 
modifications that led to ,,-'(4)e also in the lower part R/- of the parallel- 
epiped R~. 

S u m m a r y  of W h a t  Has Been Done so Far. There is a function 
m~ 5) which is larger than m # -  0 for r d >/n*+ 4 and smaller than - m #  + 0 
for rd~< --n*--4, such that 

~(me;  R.) >/o~(m~.S); R~) - c ~ IS(~)l (4.11) 

(here ~ *  is referred to the whole R.). 

Let K . : = B . x ( - o o ,  +or) ,  

m r 6 )  . _  ~mt, 5) on R, 

Then one can verify that 

~ t  -(5'" R , )>  "/'~h~h~h~h~h~h~h~h~h~h~h~h~h~h~h~h~h~hOZ-( na (6)" K e) - c (  IB.I (4.12) 

(choosing k so large that ck < O. 
We would like to have ,~(m(~6);g~)>~,~(m*;Ke) when m* is the 

instanton rfi of Theorem 2.6 on each line parallel to the rd axis of K~. 
However, we are not able to make an estimate of ~ t , , r  6)' Ke) to verify the 
inequality. A possible way out would be to prove that the infimum of 
~ ( . ;  Ke) over all m e L~176 [ - m # ,  re#I) having asymptotic values -t-m# 
for ra--' +o0 is just ~(m*;/2,) .  This is, however, ruled out by the fact that 
m* is not a critical point of ~ ( - ;  K~). In fact, all critical points of ~ ( . ; K e )  
(see the Remark below) must satisfy 

re(r) = tanh{flJ * m(r)}, ff .m(r) :=~x dr' ff(r,r')m(r') (4.13) 

822/82/3-4-11 * 
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where 

Y(r, r ' ) : - -  J ( l r -  r'l) l{r,r'~ K~I +j(r) O(r--r') 
(4.14) 

j(r) : = I  dr" J ( ] r -  r"l) 
{ r" q~ K~} 

and g ( r - r ' )  is the delta function. Since m*(r)=tanh{ f lJ ,m*(r )}  when 
the convolution is over the whole ~d, in general m * ( r ) #  tanh{fl~7, m*(r)} 
when the distance of r from OK, is smaller than 1. 

R e m a r k .  The Euler-Lagrange equation for the functional ~ ( m )  := 
.~(m; R a) is 

f ' (m)  + m = J �9 m (4.15) 

Recalling the definition o f f  in (2.20), we find that (4.15) becomes 

- i ' ( m ) = f l J  * m 

Since - i ' ( s )  = arctanh(s), one deduces that a function m �9 L~(Ru; ( - 1, l )) 
solves (4.15) if and only if 

m = tanh(flJ �9 m) 

To overcome the problems due to the presence of the delta function in 
the interaction, we introduce an auxiliary functional ~t~(.;K~)~< i f ( . ;  K,) 
for which it is possible to prove that there is a unique critical point (a mini- 
mum) which is an instanton function close to m*. This minimum is found 
by means of an auxiliary dynamics on L~ [ - 1, 1]) under which the 
functional ~-tt~(.;K,) is monotonic (nonincreasing). The minimum is then 
obtained as the limit point when t ~ +oo of the orbit m, that starts from 
mt~ 6). The analysis adapts to the present context results known in the 
literature.t ~3.14) Even though the main ideas are the same, the extension is 
not totally trivial and we will report some details in Appendix C. The 
dynamics here is merely a technical tool, but the evolution has an intrinsic 
interest with many significant applications in the physics of phase separa- 
tion and mathematical interest in its own right; see, for instance, refs. 9-12. 

As explained above, a way to avoid the delta function in (4.14) is 
to modify f f ( . ; K , )  into another functional, fft~l(.;K~), which no 
longer produces the dangerous local term in the interaction. For any 
meL~(K~;  [ - -1 ,  1]) we set 

~t l l (m;  K~) := ;K~ dr [ 1 - j ( r ) ] [ f ( m ( r ) )  - f ( m p ) ]  

+�88 • K~ d r d r ' J ( l r - r ' l ) [ m ( r ) - m ( r ' ) ]  2 (4.16) 
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Obviously 

and since 

~ ' ~ ( m ;  K~) ~<~(m; K~) 

Ix dr[1- j ( r )]m(r)2=IIx ,  drdr'm(r)2J(lr-r'[) 
x K ,  

we have, recalling (2.20), 

~ l ) ( m ;  K~) = _fl- i  fg, dr [ 1 - j ( r ) ]  i(m(r)) 

'L -~_ dr dr' J([r-r ' l)m(r)m(r')-C~ll(f l)  
•  

(4.17) 

(4.18) 

dm,(r) 
dt - -  - m,(r)+tanh{flJC'~,  m,(r)} 

l~'~ * m,(r) := Ix ̀  dr' J~a~(r, r') m,(r') 

(4.19) 

1 J([r-r'l),  fxdr'J~l~(r,r')=l (4.20) J~l~(r, r') := 1 --j(r) 

We show in Appendix C that there is an (instanton-like) function m~ 7~ 
on K~, which is a stationary solution of (4.19) in the whole K~. This 
solution is an antisymmetric function of rd and there are c > 0 and c' inde- 
pendent of e and of the section Be of the cylinder K, so that 

n7(c7)(I ") ~ nl# - -  c'e -era, r d >1 0 (4.21) 

Moreover, if m, is the orbit starting from _,~61 then there is r ~ = (0, r ~ so 
that 

lim m,(r)--m~7~(r-r ~ (4.22) 

where 

where Cl~(fl) is the sum of the first two terms when m(.)--rap.  
By direct inspection frIll( .; K~) does not increase along the solutions 

of the equation 
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uniformly on the compact subsets of Ke. By the lower semicontinuity of 
~-t~)( .; K~) and its invariance under vertical translations, 

..~(,) r Ke)>~ )r162162 "K~) ~>~(I)I,'-(7)" Ke) (4.23) (m e , l i m i n f ~  -(~ ,,...~ ,,, ,..-e , 

By (4.11), (4.12), (4.17), and (4.23) we have 

~-~(me; R,)>~ ,~(I)(m(tr), Ke) -e f t  I B e [ - c  ~ IS(-~)l 
:d" G 5LP*(mI~ I I) 

>~J~(l~(m(]); Ke)--c~ lB~[--c ~ IS(~)l (4.24) 

where L a* is referred to the whole R e. 
Our last effort will be to replace mtr 7~ by m*, which we recall is the 

instanton n~ of Theorem 2.6 on each line parallel to the r a axis of K~, with 
the O's belonging to the original middle section B e of R,. The natural way 
would be to prove that m~ 71 is really close to m* except possibly at points 
close to the boundaries and with height rd not too large. Recall in fact that 

.t7~ and m* have the same asymptotic values, which they approach both m e 
exponentially fast. However, although we believe this statement to be 
correct, we lack a proof. We will proceed by changing the functional and 
the corresponding dynamics with the introduction of "Neumann condi- 
tions" at the boundaries. After that, the above comparison will become 
easier. To construct the kernel j~2) we need to smooth the "corners" of Be 
from inside; hence let /~ecB~ be a convex C ~ set (in Appendix D it is 
shown that B can be taken as a cube) with 

Let R~ := J~, x ( oo, + oo) c K,. Then, denoting again by �9 (7~ the restric- - -  ? f l  e 

tion of this function to Ke, we have 

, ~ (  1 }(H:/(e7); Ke ) t> . ~ (  1 )(rote7); ~ r )  _ C82 - d (4.25) 

because of the exponential convergence of m(Z ) to ___m# as rd---~ q-oO. 
We denote by d(r, OR,) the distance of r e R e from the boundary 0R, 

of R e. In Appendix C we prove that there is a smooth function J(2~(r, r'): 
K, x R e --. [0, 1 ] with the following properties: 

1. j,21 is supported on {(r, r'): r c • ,  r' ~B~(r)c~Re}. 
2. Jt'-)(r,r')=Jt2)(r',r) on KexKe.  

3. ~gdr'J('-I(r,r')= 1 for all r ~ K , .  
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4. j(21(r, r') = J( I r - r ' l )  for all r, r' e R e such that d(r, 0R,)/> 1. 

5. Set r=(~,rd), ~eB,,  rdeR; then for all ~eBe and all rd, r'd~R 

f~d~'  d(21((~, ra), (~,, r'a)) = I~ d~' J(l(~, ra)-  (~', r~)l) (4.26) 

We then define for any meLt (Re;  [ - 1 ,  1]) 

'~(2)(m; Re) := Ix, dr Ef(m(r)) - f ( m p ) ]  

+ �88 ;fg,• dr dr' J~Z)(r,r')[m(r)-m(r')]2 (4.27) 

The same argument used to prove (4.25) shows that 

~ . . . . . .  Ke) >~"~(2)fm(7L K,)--cs~- 9 -d  (4.28) 

By direct inspection one can prove that ~(2)(m,;R,) is nonincreasing 
along any orbit m, solution of (4.19) with K e replaced by R, and Jill(r, r') 
by Jt2)(r, r'). 

Let ~,,~L~(R; [ - 1 ,  1]), t>~0, satisfy the equation 

d~J ,( s ) 
= -~,(s) + tanh{flJ * ~,(s)}, s ~ R (4.29) 

dt 

with Y as in (2.18). Then by statement 5 the function 
m,~L~(R,;  [ - 1 ,  1]), t~>0, defined by m,(r):=~',(rd) solves (4.19) with 
R~ and j(zl. As a consequence, m*(r)= n3(re), r e R , ,  n~ as in Theorem 2.6, 
is a stationary solution of this new version of (4.19). 

Let m,eL~ [ -  1, 1]) solve this new version of (4.19) with initial 
condition mo = m~ 7~. Then, by arguments completely similar to the previous 
ones which led to m(, 7~, we conclude that m, ~ m* as t ~ +m.  Thus 

(4.30) 

Finally, there is a constant c > 0 so that, denoting by [B[ the area of the 
original basis B of R, 

~2)(m*; R,) = e' -as a IBI - ce 2-a (4.31) 
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By (4.24), (4.28), (4.30), and (4.31) we have 

~-(me; Rc ) >i ~12)(m,;  - , - d  K~)--ce- - C  IB~I-c 

Alber t i  e t  a l .  

>~e'-a(sa-C) IBI-cC--a-c  ~. IS(~)l (4.32) 
~ ~ -~*(m~ I) ) 

where L, a* is referred to the whole R~. We first consider the sum relative 
to R~ +. By the definition of the minimal section, if Ne&#*(mt,~)), 

IS(~)l n* ~< I~1 (4.33) 

with n* as in (4.7). Moreover, 

,u . < I  on any D c ~ S e  -,~ / rim, ,k,~ *( ~ = ~ 

so that in any such D there is a cube Q e ~t*) of side 2 -*  where 

1 P 
I dr ml~ I ~(r) <.% m a - ( 

I al Je 
(4.34) 

Thus, 

~odr IXR(e") -m~,l~(r)l >1 fe dr Izg(er)--m~ 1 ~(r)l 

= fQ dr [mp - ml~ ' ~(r)] 

>i IQI ( = 2-1k+l)a IDI ( (4.35) 

because QcR~ +, where xR=m#.  By (2.23), ~=e ' -aFA hence, using 
(4.33) and recalling (4.7) where n* is defined, and (4.9), we have 

ed- -  I Z IS(~)l 
~ ~.fiP*(mlc I)) 

~<8d Z h 
e . ~ , ( m l l  I) 

2~k +---Id . 
<~ed Z Z -~ Jz drlxR(er)-m'~"(r)t 

~2. ~ .~.~,(m~l )) D ~  

c <~ ~ dr IzR(r) - u~ I)(r)[ 
JR 

c <~ f~ ~R dr Iz•(r) - u~(r)l (4.36) 
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where u(,l)(r):=m~l~(e-tr), rEY-. The same bound is obtained when we 
sum over  the clusters in R~-. By (4.32) and (4.36) we then deduce that  

C 
f dr IxR(r)--u~(r)l F~(u~; R) = ea- ' ~ ( m ~ ;  R~) i> (sp--  cC) IBI - ce - ~ R 

Then recalling that  u~--* u in L~(~ "-) as s--* 0 § we obtain (4.4). The 
proposi t ion is thus proved. II 

4.2. Proof of Condition 2 of r-Convergence 

We only sketch the proof. Let u~BV(~--; {-t-me}). We first suppose 
that  the boundary  OE of the set { u ( r ) = m p }  is a hypersurface of class cgl. 
Let re(r):=u(er), r e ~ ,  so that  m ~ L ~ ( ~ ;  {_+me}). Given 0 < 6 <  1 and 
e >  0, we define u, e L ~ ( ~ ;  [-ml~, me] )  as follows. Let d(r) be the signed 
distance function from e - I  OE positive inside e-~E.  We then set 

f Kt(d(r)) if [d(r)[ ~<e -~ 

m*(r) := ~mp if d(r) > s-6 

L - -m~ if d(r)< - s  -a 

where rh(s) is the instanton of Theorem 2.6 which converges to _+m e as 
s ~  +oo exponentially fast. We then have, using the coarea formula (see 
3.4.4 in ref. 17) 

;j ~*.(m. ) ~ c ' e - ~ - " +  dt [ f (~ ( t ) ) - f (mp) ]  2({d(x)=t}) 

_ _ _ d2(x) 

x f d2(y)J ( l (x , t ) - (y , s ) l )  
{d(y )=s}  

where d2 denotes the ( d - 1 ) - d i m e n s i o n a l  surface measure. Now for any 
(x, t) as above and any s 

- f  
lira d2(y) J( l(x,  t)--(y, s)l) = ] ( I t -  sl) 

,c~O+ {d(y) = s} 

[see (2.18)] and 

r 
lim Ed--  I | d 2 ( x )  = IOEI 
~ 0 + a{d(x) = t} 
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Hence 

lim sup e a- lob(m*) <. ~(rh) ION = sp ION 
e ~ O  + 

Setting u*(r):=m*(8-1r), r e J - ,  we then have that  FAu*)--, F(u) as 
e--, 0 +. This proves condition 2 in the cg~ case. To  prove the general case 
we use a density argument.  In Theorem 1.24 of ref. 20 it is proved that  
every set with bounded perimeter  can be approximated  in L 1 and in 
perimeter by a sequence of sets with cgo~ boundaries.  Thus, given any 
uEBV(~-; { ___rap}), by a diagonalization procedure we then construct  a 
sequence {u,} that  satisfies condition 2. The F-convergence of {F,} to f is 
thus proved. I 

APPENDIX A 

In what follows we denote by Cy(r) the a t o m  of .~  that  contains r (-~r 
is defined at the beginning of Section 3). 

L e m m a  A1. There is a positive constant  c~ such that  for any spin 
configuration crr, r e R a, and R > 0 we have 

Proof. By definition [see (3.4)], 

fn dr' zcray(r')=~B dr' l dr" ar(r") 
Rm ,~rl tC~(r')l :,-') 

Then 

~ dr' ~ : ~ ( r ' ) - ~  dr' %(/) 
tdr) Rfr) 

=~ dr' l fc., d,'"ay(r") 

- ~s dr' 1 
.~rl ICy( / )  n BR(r)[ 

~c, [ IC'(r')c~BR(r)[1 x dr" ar(r" ) 1 --  .'---7-- 
(r'lcaBR(r) [C),(t )t J =: I + I I  

Since Cy(r')nBR(r)= Cy(r') for Ir'-rl < R - - 2 y  ~ [recall (3.3)], there 
is a positive constant  c I such that  max(I ,  I I )  ~< cl R -~ ) : .  II 
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Lemma A2. There is a positive constant c2 such that for any spin 
configuration av 

IH~(try) - H~(n/rr)l <~ r (A.1) 

Proof. Recalling definition (2.3), H~(. ) = H ( - ;  3"~), and (3.4), we have 

H,( rt./r~,) - H,( a~,) 

=I f2  :r, dr, f:r~ dr'J(lrl-r'l)tr~'(rl)ffy(r2)- - 

y - - 2 a d  _ 

~ ~r~ dr f ~_ dr' J ( i r - r' [ ) f c./( r ) dr l /c,( r' ) dr 2 tr y( r ' ) tr '( r 2 ) 

1 [ 
= --~ fTdrl fa. dr2ff~,'rl'ay'r2) 7-2~d fGt~,)dr 

x fc.~o.,_) dr' J ( l r - r ' l ) - J ( l r , -  r,I)] 

By the regularity of J, there is a positive constant c' so that 

sup I J ( l r - r ' l ) - J ( l r l - r 2 1 ) l  ~<c'l{I,.,--rzl~<2} IlVJIl~-o ),'~ 
rEC.Arl) 
r' 6CT(r2) 

where JlVJIIo~ is the sup norm of VJ and 1 a the characteristic function of 
A. We then get 

IH,(%)-H,(TL,  a~.)I <~ C2),~e -d I 

I . o m m a  ,0,3. There is a positive constant c3 such that for any 
coarse-grained configuration s~, 

Proof. 

[log W(s~.) - y-d~(sy)  I ~< c3(ye)-d y2(, -,~)d log()'-J) 

Let C~, be an atom of .,~ and r ~ C~,. Then, by definition, 

sy(r) = 1 f dr' ~r~,(r') 
IC~,(r)l ,c~l. 

N ) ,  where K(m) 1 - m  
K(m) "-  2 

�9 - - - N ~  1~ 

We call 21 -.- 2N the values attained by a~.(r') when r' varies in Cr(r). Thus 
2;e { _1} and N goes like y(~-')d. The number of sequences {2;} that give 
rise to the same value m e [ - 1, 1 ] of s~,(r) is 
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We use Stirling's formula to estimate this quantity (see, for instance, ref. 3 
and references therein), and we get, recalling the definition of i(m) [see 
(2.21)], 

l ogN 1 ( 1 - m ) ( l + m )  
~< 2--N N log 4 

4 

-t N 2 ( l _ m ) ( 1  +m )  

log N 
-< ' (A .2 )  --~ c3 N 

for m = 0 ,  +2/N, .... +_(N-2) /N and for a suitable positive constant c'_,. 
The left-hand side in (A.2) is 0 if m =  ___1. 

The weight W(s~,) of the configuration s r is the product of the weights 
over all the cubes C~. in ~-~. We call C; the generic one and m; the value 
of sy(r) when rE C;. We then have 

~ l o g (  N ) _ y _ d ~ r d r i ( m ( r )  ) <<c3(ye)_a)'atl_a)log(?_l ) 
G K(mi) 

because the number of terms in the sum is of order e-a)'-~d. II 

I . emma  A4. Let N~. be the total number of distinct coarse-grained 
configurations s t,; then there is a positive constant c4 so that 

log Ny <~ c4()'e) -d ytl--O~d Iog()'--t) 

Proof. A configuration s~, is defined by giving the value of the 
magnetization in each cube C~, paving ~'~. Since the number of possible 
values of the magnetization is bounded by 2)' I~-~ld and the number of 
cubes C~, in ~ is bounded by e-d)'-~d we immediately conclude the proof 
of the lemma. II 

A P P E N D I X  B 

In this appendix we prove some statements used in the proof of 
Proposition 4,2. It is convenient to formulate the problem in the following 
way. We consider three nonempty, disjoint, bounded regions of R d, A, F, 
and A. Each one is the union of cubes of the partition S I-~. We suppose 
that ~ := A u F u A is connected and that d(A, A), the Euclidean distance 
between the two sets, is not smaller than 2. 
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Fig. 4. An example of the regions A, F, and A of Appendix B. A is the union of the three 
central cubes, F of the ten cubes surrounding A, and A is the complement. The shaded region 
represents A t. 

The example we have in mind is with A a connected set, and F the 
collection of all the cubes in ~ outside A that  have distance 0 from A; A 
is then separated from A at least by a cube of ,~-~1, whose side has length 
2 (see Fig. 4). 

We consider the functional ~ ( m ;  ~ )  on L~ [ - m / j ,  m~])  defined 
in the usual way by 

~ ( m ;  ~ )  := I~ dr I f ( r e ( r ) )  -f(mtj) ] 

+�88 II~ • drdr' J(lr-r'l)[m(r)--m(r')]2 (B.1) 

Given 1E (0, 1 ), we set 

~,:={,'~:d(r,r)<.t}; rl:={r~r:d(r,~)<<.l-l} (B.2) 

and finally, for any r ~ ,  any measurable  set C c ~ ,  and 
m~ L~ [--m/j, mp]), we define 

h(r; m; C) :=~cdr' J(lr-r'[) m(r ' )  (B.3) 
~r J(lr-r' l)  

setting h(r; m; C) := 1 if the denomina tor  in (B.3) is 0. 
We will consider two cases: C = F u A  and reA~uFi, and C- -  

(F\Ft) uA  and reFt. In both  cases h(r;m; C) does not depend on the 
values of  m in A and, moreover,  the denomina tor  in (B.3) is uniformly 
positive because, by Definition 2.1c, sup{s > 0: J(s) > 0} -- 1. This remark is 
used to prove the following lemma: 
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L e m m a  B1. For any I t ( 0 ,  1) there exists a sequence {Ck}k~ of 
positive numbers which converges to 0 as k---, +oo with the following 
property. If ( > 0 and for some k e r~ 

zttk~m(r)>~mp--( for all r e / "  (B.4) 

then 

h(r;m;FuA)>~mp-((+ck) for all reAiuFt (B.5) 

h(r;m;(F\Fl)~JA)>~mp-((+Ck) for all r~Fi (B.6) 

Proof. Let C = F u A  and 

Ck := sup sup Jh(r; m; C)--h(r; ~tklm; C)] (B.7) 
rEdlw FI m ~ L ~ ( ~ ;  [--rap,rap]) 

Then ck~O as k ~  +oo and ifr~(k)m(r)>~mp--( for r6[', then 

h(r;m;C)>~mp-(-ck forall reAtuFi 

which proves (B.5). The proof of (B.6) is similar. 

Remark .  We will actually take for ck the maximum over all possible 
choices of A and F (which is finite because the right-hand side of (B.7) 
takes only finitely many values). 

For any meL~-(~; [ - m p ,  rap]), /~(0, 1), and 0 e  (0, m/~) we define 

(m(r) if re(F\Fi) uA 
ml.o(r):=~lm(r)] if reAwFland]m(r)l>>,mp-O (B.8) 

(mp--O if r~AwFtand[m(r)l<mp-O 

We then have the following result. 

T h e o r e m  B2. Let IE(0,1) ,  ( > 0 ,  and k ~  be such that 
( + C k = :  O<m/j, with Ck defined in (B.7). Then for all m that satisfy (B.4) 
we have 

~ (m;  ~ )  >/.~(m~.o; ~) (B.9) 

Proof. Since ml, o = m in (F\FI)w A and the support of J is con- 
tained in the unit ball, there is no interaction between A and A w F~, where 
m and m~.o are different. For this reason the values of m in A will not play 
any role in the following proof. 
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We observe that under the replacement m ~ mt.o the first term in the 
expression of ~-( .; N?) does not increase, so it is sufficient to prove that the 
second term has the same property. Given two bounded measurable sets A 
and B in R d, we write 

E(A, B)= �88 Irma fr,~ dr dr' J(Ir-r ' l)  

x { [m,.o(r) -m~.o(r')] z - [re(r) - m(r ' ) ]  2} (B.10) 

and split the second term in (B.1) into a sum of terms E(A~, B~). We will 
show that each of them is nonpositive and this will prove the theorem. In 
the proof we will use the two following statements, whose simple proof is 
omitted: 

For any s e  [ - m p ,  m/j] and C c ~  define 

G( s, C):=I dr' J ( i r -r ' l ) [s -m(r ' ) ]  2 
C 

Then: 

1. G(s, C)>~G(t, C) for any s<<.t<<.h(r;m; C). 
2. If h(r; m; C) > 0, then G(s, C) >1 G(Isl, C) for any s ~ [ - m p ,  mp]. 

We next examine separately the various terms E(A i, Bi): 

(T1) A = B = (F\Ft) u A. Then E(A, B) = 0 because m =mt, o. 
(T2) A = F i n { I m ( r ) l < m p - O  } and B = ( F \ F t ) u A .  We apply 

statement 1 for any r~A with s :=re(r)  and t :=mt, o(r)=mp-O. In fact, 
s<~t<~h(r;m;B); the last inequality follows from (B.6) recalling that 
O=(+Ck [see (B.6)]. We then have G(m(r),B)>~G(ml.o(r),B), which, 
integrated over r ~ A, yields E(A, B) <~ O. 

(T3) A = F i n { I m ( r ) l > ~ m p - 0 }  and B = ( F \ F I ) u A .  For any r ~ A  
we have h(r;m;B)>>.mp-O>O. Since m~.o=lml on A, we get by state- 
ment2  that G(m(r), B)>~G(m~.o(r),B). Integrating this inequality over 
r~A, we then find that E(A, B)40.  

(T4) A = z l t n { I m ( r ) l < m p - - 0 }  a n d B = F u A .  Wewri te  

E(A, B)= �88 ~ dr fa dr' J(Ir-r ' l)  

x {([ml, o(r)- m(r ' ) ]  2 -  [ m ( r ) -  m(r ' ) ]  2) 

+ ([ml, o(r ) _ ml, o(r,)] 2 _ [mco(r ) _ m(r')  ] 2)} 

=: I(A, B) + II(A, B) (B.11) 
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For any r e A we have h(r; m; B) >1 rap-  0 by (B.5) and m p -  0 = mt, o(r) =: 
t/> s := m(r). Hence reasoning as in (T2), we get I(A, B)~< 0. 

To prove that II(A, B)~< 0 we introduce the sets 

B, := {r 'EFI :  Im(r')l <mp--O} 

B2 := {r 'eFl:  Im(r')l >~mp--0} 

B3 := F\FI  

and we split II(A, B) = II(A, B~) + II(A, B2) + II(A, B3). Then mt, o(r') = 
m(r') for any r' ~B 3 so that II(A, B3)=0.  Moreover, mt, o ( r ' ) = m p - O  for 
r ' e B  1 and ml, o(r)>~mp-O for r e a l ,  so that ]ml, o(r)--ml, o(r')[<~ 
]ml, o(r)--m(r')[ for r e A  and r ' e B , .  Therefore II(A, Bl)~<0. Finally we 
have ml, o(r')= ]m(r')] for I" eB2. Hence 

II(A, B2) = 1 f dr';r dr J ( [ r - r ' l )  
~ EB2 E A  

x { [ ] m ( r ' ) l - m t ,  o(r)] '--  [ m ( r ' ) - m t ,  o(r)]'-} <~0 

by statement 2 because h(r'; ml.o; A)>1 m p - 0  > 0 for any r' e B 2 as mt, o >~ 
mls - -  O. 

(T5) A=dtc~ {Im(r)l >~mp-O} and B - - F w A .  We use (B.11) with 
the new A. The first term on the right-hand side is nonnegative by state- 
ment 2: in fact h(r ;m;B)>O for r ~ A  by (B.5) and mt.o=lm I on A by 
(B.8). For the second term we use the same argument as in the last part 
of the proof of (T4). Thus E(A, B) <~ O. 

(T6) A = B =  I t ,  A = B =  A and A = A\At, B = ['1. In all these cases 
[mt, o(r)-mt.o(r')] <~ ]m(r)--m(r ' )[  for any re  A, r' ~B. Hence E(A, B)<~0. 

The theorem is proved. II 

APPENDIX C 

In this appendix we prove the properties of the instanton used in the 
proof of Proposition 4.2. Recall that K~ is a cylinder in R d with basis 
B~=e-~B and that we have supposed for simplicity that K~ is ~176 
measurable. The case when K~ is a torus has been considered in ref. 24. We 
will first prove the existence of /~7(~ 7) (see the proof of Proposition4.2), 
hereafter denoted for simplicity by rh, namely of an instanton solution of 
(4.19). We will follow ref. 14, where the d =  1 case is considered. We use the 
following basic and elementary properties of the evolution (4.19), where 
m,, t/> 0, denotes a solution of (4.19) with m o ~ L~(K,;  [ - 1, 1 ] ): 
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1. Let ~ b , : = m , - e - ' m  o. Then IVO,[ is uniformly bounded with 
respect to r, t, and m o. As a consequence there exists a sequence 
t,, ~ +oo such that m,o converges uniformly on the compact sub- 
sets of K,, as n ~ +m.  

2. The functional J~ll~(.;K~) defined in (4.16) is lower semicon- 
tinuous on L~ [ - 1 ,  1]) in the weak L]oc(K~)-topology, and 
~ ( m ;  K,) < +oo if and only if there are a_+ e { _ 1} such that 
m - x , ~ L 2 ( K , ,  dr), where x~(r ) :=rnpa+ [respectively X~(r):= 
m p a _ ]  if ra>>.O (respectively ra<0) .  

3. If f f l l~(mo;K,)< +oo, then d ~ l ( m , ; K , ) / d t < ~ O  for all t~>0. 

4. If ,~-II~(mo; K,) < +m,  then there are rh eCg(K,; [ - r ap ,  rap]) and 
a sequence t,---, +oz such that m,,,---, if7 uniformly on the compact 
subsets of K, as ii ---, + ~ ,  and rh is a stationary solution of (4.19) 
in the whole K,. 

We omit the proof of the above properties, which is very similar to 
that in ref. 14 for d =  1. 

Proposition C1. There is f i t ~ ( g ~ ( K ~ ; [ - m ~ , m / ~ ] )  which is a 
stationary solution of (4.19). Moreover, ~fi is an antisymmetric and strictly 
increasing function of ra. 

Proof. Following ref. 14, we set for r e  K~ 

I 
- r ap  for r a<<. - 1  

m0(r) := mp for ra>~ 1 (C.1) 

mpra otherwise 

Let m, solve (4.19) with initial datum (C.1). Then m, is nondecreasing and 
antisymmetric for any t~>0. Since ~ ( m o ; K ~ ) <  + ~ ,  the limit fit con- 
sidered in property 4 solves (C.2) below, is nondecreasing, antisymmetric, 
and such that ~ ( f i t ;  K~)< +oo. This shows that rh :=fit is not identi- 
cally 0. 

Recalling that J ~  defined in (4.20) is a cg~ function, we then obtain 
by differentiating the equation 

fit(r)= tanh{flJ~'  �9 fit(r)}, r~K~ (C.2) 

that fit ~ cg~(K; [ - r a p ,  mp] ). If the derivative fit' of fit(r) with respect to r a 
were 0 at some point r, then it would be 0 in the whole {r': Jl~)(r, r ' )>0}  
because fit' 1> 0. By iteration we would then reach a contradiction with the 
previous statement that fit is not identically 0. Hence fit(r) is a strictly 
increasing function of r a and the proposition is proved. II 
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Proposi t ion C2. There are constants  c and c' positive and inde- 
pendent of  e so that  the function fit satisfies the inequality 

rh(r)>>.mp--c'e -~'~, rd>~O (C.3) 

Proof. By Proposi t ionC.1 there is a > 0  so that  rh~>a on {reK, :  
rd~ 1}. Using this fact, we will prove that  (C.3) holds with a constant  c' 
that depends on a. We will then complete the p roof  of  the proposi t ion by 
showing that  a is uniformly bounded away from zero as e --* 0 +, hence that 
c' can be taken independently ofe. 

To prove the first s tatement we introduce the following dynamics. We 
call K~ ;' := { r 6 K~: rd >/i}, i----- 1, 2. Then for any m ~ L~(Kf~ I); [ - 1, 1 ] ) we 
define mt~L~ [ - 1 , 1 ] )  as m o : = m  on K~ I~, m ,=mo,  t>>.O, on 
K~ ~ ~\K~ z~. Finally, on K~, z~, for t/> 0, m, solves the equat ion 

dm,( r ) 
dt 

- - -  m,(r )  + t a n h { f l J ' l ' ,  m,(r)} 

j i l l .  mr(r) = [ dr' J(l)(r, r') m,(r') 
ale q u 

(C.4) 

fit restricted to K~, l~ is obviously a s tat ionary solution of (C.4). 
Given uosL~ [ - 1 ,  1]), we say that  the function u, eL~(K~,~; 

[ - 1, 1 ] ) is a subsolution of (C.4) with initial da tum Uo if u, = Uo, t/> 0, on 
K~, l ~\K~, 21 and 

~ t  

d---t <~ --u, + tanh{flJ" '  * u,} on K~Z~forallt>~O (C.5) 

Since j~ll>~ 0, one can show that if Uo ~<mo on K~ 11, then u, ~ m ,  on KI, l 
for all t >/0. A similar s tatement is proved in ref. 14 for d =  1. 

We want  to construct a subsolution of (C.4). We start  by constructing 
a countable system of functions v,: N+ ~ •, t i> 0, defined by v,(1) := a, 
t>~0, and, for n e  N, n~> 1, 

i.e., 

dv,(n + 1 ) 
dt 

v,(n + I) + tanh{flv,(n)}, vo(n+ 1 ) = a  (C.6) 

v,(n+ l ) = e - ' a +  dse-t'-S)tanh{flv~(n)} (C.7) 
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Since f l >  1, we have a- tanh( f la )<0  (recall that  a < m p ) ,  so that  

v,(2) = tanh(fla) + e- ' [a  - tanh(f la)]  (C.8) 

is an increasing function of t. Define 

v*(2) := lim v,(2) = tanh{fla} (C.9) 

Similarly, by induction on n, setting 

v * ( n +  1 ) : =  lim v , (n+  1) 
I ~ O G  

one can prove that  

v*(n + 1) = tanh{flv*(n)} (C.IO) 

Calling T(s) := tanh{ps} the map  from (0, mp] into itself and T" the nth 
iterate of T, we have from (C.IO) 

v*(n + 1) = T"(a) 

Hence there are constants  c I ) 0  and c, so that  

v*(n)~m#--c2e -c''' (C.11) 

because mp is a stable point for T attracting any orbit  that  starts from 
(0, mp]. 

To  relate the system v,(n), n ~ N, to a subsolution of (C.4) we need 
preliminarily to prove that  D,(n + 1 ) := v,(n + 1 ) - v,(n)/> 0 for all t t> 0. 
We have, after Taylor  expanding to first order, 

D,(n + 1) = f~ ds e-"-~"(tanh{f lvs(n)}  - tanh{flv~(n - 1)} ) 

= fods e-"-s~$s(n) D,(n) (C.12) 

where ~q(n) is the derivative of  the hyperbolic tangent computed  at some 
value which depends on v~.(n-1)  and v,(n). Then ~Os(n)>0 and, conse- 
quently, D,(n + 1)~>0 for all n >_-1 and all t>~0, because D,(2)>10, as 
follows from (C.8), recalling that  v,( 1 ) = a. 
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We are going to show that  the function u, ~L~(Kt~; [a,  mp]) ,  t/> O, 
defined by 

u,(r) := V,([rd]) (3.13) 

_ ~-t2j be such that  Ira] = n +  I; then is a subsolution of (C.4). In fact let re~x~ 

du,(r) 
dt + u,(r)-tanh{flJ~ll , ut(r)} 

= - t a n h { f l J  ''~ * u,(r)} +tanh{flu,(n)} <~0 (C.14) 

because for such values of  r one has 

J~l~,ut(r)=kl(r)v,(n+2)+k2(r)v,(n+l)+k3(r)vt(n)>~v,(n ) (C.15) 

for three suitable nonnegative functions k~, k2, and k 3. The first equality 
follows from the fact that  J~(r,  r ' ) =  0 if [ r - r ' l > ~  1. Moreover ,  recalling 
that  the r '-integral o f J  ~l~ is equal to 1, we get k~(r) +k2(r) +k3(r) = 1. The 
last inequality in (C.15) follows from the fact that  v,(m)>i v,(n) for m >~n, 
which has already been proved. We have thus shown that  u, satisfies (C.5) 
and that  it is a subsolution of (C.4). Since rh/> u0 on K~, ~), it then follows 
that  

rh~> lim u , = u * ,  u*(r) :=O*([rd] ) 
t ~  +OO 

Then (C.3) follows from (C.11), but, as already observed, the constant  c' 
depends on c2, which is in turn determined by a. To  prove Proposi t ion C.2, 
we thus need to show that a can be taken independent of e. 

To this end, for any r e K~ with 1 ~< r d ~< 2 we consider a region F c  K, c~ 
{1 <<.rd<~2} containing r which is .~~ and .-connected;  see 
Definitions 2.1a and 4.3. We also suppose that  for ~ > 0 as in (C.21) below, 

16rl 
~<~ (C.16) 

irl 

IF[ is the volume o f / ' ,  hence the number  of  cubes o f ~  ~~ in / ' ;  8F i s  the union 
of all the cubes in K~\I'at distance not larger than 1 f r o m / ' a n d  I~/'1 the total  
number  of  such cubes. We can find a finite family of  such s e t s / "  so that, 
modulo  translations, for any e > 0 any r in the strip { 1 < rd ~< 2} C~ K~ is con- 
tained in an element of  the family. We fix in the sequel a r eg ion / "  and call 
A =/ 'w  ~F. 

Let u~L~(A; {0, rnp}), u(r):=mp when rEF and u o ( r ) : = 0  when 
r ~ ~/'. We call u, ~ L~(A; [0, rap] ), t/> 0, the function that  solves (C.4) in F, 
with Uo = u and u, = 0, on ~ F  for all t >/0. 
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The proposi t ion is then a consequence of  the following: 

I . e m m a .  (i) There are u* ~L~ [0, mp])  satisfying (C.2) in F a n d  
a sequence t ,  --* +oo as n ---, + ~  such that  ut, ---' u* uniformly on A. 

(ii) rh >~u* on A. 

(iii) There is a > 0 so that  u* 1> a on F. 

Proof of the Lemma. Statement (i) follows from proper ty  4 (see the 
beginning of this Appendix),  which also applies to u,(r). 

Let m,(r) be the solution of (4.19) with initial da tum (C.1). Then m,/> 0 
on 6 F  because m,/> 0 on { rd/> 0}, as m, is ant isymmetric  and nondecreasing. 
It then follows that  m, >I u,, t/> 0 on A. 

The p roof  of (iii) is more  delicate. We know from (i) that  for r e F 

u*(r)=tanh{fAdr'J'll(r,r')u*(r') } (C.17) 

Then there is a constant  c5 > 0 such that, for any r ~ F, 

u*(r) >>.c 5 f rdr ' Jll)(r, r') u*(r') (C.18) 

Moreover,  there are a positive integer n and a'  > 0 so that  for all r and r'  in F 

Thus 

~r drl J~ll(r, rl) ... frdr,,_l Jlll(r,,-z, r,,_l) J~ll(r,,_l, r') >_.a' 

u*(r)>~(cs)'a' frdr' u*(r') for all r~l" 

It is therefore sufficient to prove that  u* is not identically 0. To  this end we 
use a Liapunov function for the evolution satisfied by u,. We set for 
ueL~ [0, m#])  

~131{u; A):=frdr  [ 1 - j (r)  ][ f (u(r))-  f(m#) ] 

+ �88 dr fr dr' J(Ir-r ' l)[u(r)-u(r ') ]2 

+ �89 ~r dr fardr ' J(Ir-r' l)[u(r)-u(r')] 2 

822/82/3-4-12 
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One can check that ~ (3~(u , ; / 3  is a nonincreasing function of t and that  

~3~(u* ;  A) ~< ~3~(Uo; A) (C.19) 

We will conclude that  u* --/: 0, 0 is here the function identically zero, from the 
fact that  

~3~(0 ;  A) > ~31(Uo; A) (C.20) 

To  prove (C.20) we observe that  there are positive constants  c 3 and Ca so that  

~31(0 ;  A) = Irdr [ 1 - j ( r ) ]  [ f ( 0 )  -f(mp)] >1 c3 Ir l  

~(3'(Uo;-F)<~l frdr IA dr' J(lr--r'[)m~<~c4 l(~-F [ \v 

Then (C.20) follows from the inequality c3 IFI > c4 [fi-rl, which holds if we 
choose 

I~FI c3 
0~ --- IF ~ -  - 2c4 (C.21) 

The lemma and the proposi t ion are therefore proved, l 

To  prove that  the instanton ifi is unique, modulo  vertical translations 
and reflections, and to prove its stability, we follow again the approach  used 
in ref. 14. We thus start  from the linearization of (4.19) a round if,. Recalling 
(4.20), we have 

dv 1 ---n~O')2Bj v(r) (C.22) dt= Lv, Lv(r) := -v(r) + 
1 

L is a self-adjoint opera tor  in L2(dv; K,), where 

1 - - j ( r )  
dr(r) = dr 1 - r~(r)------~'- (C.23) 

contains the origin, as the r,~ derivative tfi' of  r~ is a Its spectrum 
0-eigenvector, 

Lrh' = 0 (C.24) 

We have proved in Proposi t ion C.2 that rh' is in L 2 since it decays exponen- 
tially fast. 
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The spectrum of L is contained in the negative real axis. To prove it, we 
consider the Perron-Frobenius isomorphism U: L2(dv; K~) ~ L2(d#; K,) 

where 

Uv=~k defined by U-l~b :=rh'~b (C.25) 

dlt(r} :=drrh,(r)  2 1 -j(r) 1 - th(r) 2 (C.26) 

The image of L under this isomorphism is 

s = ULU-'  (C.27) 

which is the self-adjoint Markov generator 

f .  

s = J& dr' P(r, r')[~(r)-~b(r')] 

~'I'" r'" 
P(r ,r ' ) :=Cl--m(r) -] -~7-~f lJ  (r,r ) 

(C.28) 

The spectrum of ~,a lies therefore in the negative real axis, the same being true 
for its isomorphic image L. Denoting by ( . , . ) t ,  the scalar product in 
L2(d#; K~), we have 

<if, Lr = -�89 ~K~ dlt(r) f'K, all" P(r, r')[ ~,(r) --~(r') ] 2 (C.29) 

which shows that 0 is a simple eigenvector, as (C.29) is equal to 0 only if 
---c, a constant; then U-~b = cr~r 

We next show that there is a spectral gap, namely that 0 is an isolated 
eigenvalue and the rest of the spectrum is at finite distance from 0. We will 
use Weyl's theorem, 128~ and to this end we decompose L = Lo + L~, where 

LoV := - v + f l [ 1  - m ~ ]  j r 1 ) ,  v 

Liv :=fl[th 2 - m ~ ]  j r 1 , ,  v 

(C.30) 

(C.31) 

We are going to prove that the spectrum of Lo is contained in { Re z ~< - 1 + 
fl[ 1 - m ~ ] } ;  recall that fl[ 1 - m ~ ]  < 1, because of the definition of rap. It will 
suffice to prove that the spectral radius of 1 + Lo is not larger than fl[ 1 - m~]. 
To see this we write 
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( [ 1  + L o ] "  v, [1 +Lo]"v)~ ,  

_< Ilfit'll~ ( [ 1  + L o ] "  v, [1 + L o ] "  v)a, d2(r) = dr[ I - j ( r ) ]  

(C.32) 

and observe that Lo is self-adjoint in L2(d2; K) and 

( l + L o )  v (r )=fxdr 'N(r , r ' )v (r ' ) ,  N(r,r ' )=fl(1--m~)J~t~(r ,r  ') (C.33) 

-'11' We then have, calling c := I]m Z/(1 -m~) ,  

<[1 + Lol" v, [1 +Lo]" v>~ 

~< c[fl(1 - m~)] 2" < o, o>a (C.34) 

Thus fl(1 - m~) bounds the spectral radius of 1 + Lo and this completes the 
proof of the statements concerning L o. On the other hand L, is a compact 
operator because it is an integral operator and because, by Proposition C.2, 
fit(r) converges to mp exponentially fast as Irdl -~ +oo. By applying Weyl's 
theorem we prove the spectral gap property for L; see ref. 13 for more details. 

We have therefore proved that the linearized evolution attracts toward 
the eigenvector fit'. Proceeding as in ref. 13, it is possible to prove the local 
stability of the manifold of instantons, namely the following property. Let 
m o e L~(K~; [ -  l, 1 ]). Call fit, the r,rupward translation by a of fit. Let/~,, 
be the measure defined in (C.26) with fit replaced by fit,,. Suppose that there 
is a so that too- f i t ,  is in L'-(/~; K~) and that its norm is smaller than some 
suitably fixed value. Then there exists b so that re(t) converges to fitb in 
L2(p,; K,). 

The remaining part, namely the proof that the instanton fit is unique 
modulo upward translations and reflections and that it is globally stable, is 
completely similar to the proof of the analogous properties in ref. 14, so that 
we simply outline the main steps. The key ingredient is a lemma of Fife and 
McLeod, ~9~ proved for the Allen-Cahn equation. In the present context it 
says that given any mo e L~ [ - I ,  1 ]) such that 

lim inf too(r) > O, lim sup mo(r) < 0 (C.35) 

there are functions q,, a,, and b,, t >/0, so that for all t >/0 

fito,- q, ~< m, ~< fitb, + q, (C.36) 

where m,, t 1> O, is the solution of (C.4) with initial datum mo. 
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Furthermore q,, a,, and b, converge exponentially fast as t ~ +oo with 
q,--, 0 as t---, + ~ .  The proof of (C.36) is just as in ref. 14 and very close to 
the original one of Fife and McLeod. With the local stability (which is 
already proven) and (C.36) we can now apply the same argument used in 
ref. 14 to show that the only stationary solution of (4.19) in K~ that satisfies 
(C.35) is translation of the instantons. Using this and exploiting the 
monotonicity of the functional ~-t))(.; K~), one can adapt the Fife-McLeod 
proof of global stability of the instantons for the Allen-Cahn equation to the 
present context, just as done in ref. 14 for the d = 1 case. 

Construction of the Kernel J(2)(r, r') 

Let S,(r, 0), t ~ •, r ~ K~, 0 ~ OB~(O), be the time flow for a point particle 
in K, with elastic collisions on ORe. Here (r, 0) denotes the initial position and 
velocity, t the time, and S,(r, 0) =: (r,, 0,) the position and velocity of the par- 
ticle at time t. Since ORe is convex, there are no tangential collisions and we 
can conclude that, except at the collisions, S,(r, O) is smooth and the Jacobian 
of the transformation (t, ~) --, S,(r, 0) is nonzero. Moreover, by the Liouville 
theorem, the flow S, preserves the Lebesgue measure on g'~ x OB~(O). 

We call 2(d0) the surface measure on OBt(O) and 

p(dtd~) := J ( t ) t  al l  dt 2(dz3) 

We define JC2)(r, r') by setting, for a n y f ~  L~(Re) (also thought of as a func- 
tion o n / ~  x 0B~(0) that does not depend on ~3) and any r e R,, 

fR dr' J(Z)(r, r') f ( r ' )=  It p(dt dO)f(S,(r, 0)) 
0,1] x c3BI(O) 

Property 1 o f J  (-') follows from the fact that t ~< 1 and that the speed is 1; the 
equality 

. p(dt dO) = IR, dr' J(r, r') = 1 
I[O 1] • OBI(O) 

proves property 3. Property 4 holds because S,(r, 0) = r + tO if d(r, OK,) >1 1; 
in fact in such a case the point does not collide before t = 1. Property 5 
follows from the fact that the evolution of the last coordinate ra is as in the 
free motion, as the walls OR, are parallel to the r a axis. 

To prove property 2 we write for g, f e  L~ (R ,  x OB,(O)) which do not 
depend on 0 but only on r 
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J'X,• X, dr dr' JIZ)(r, r') g(r)f(r') 

= f~ dt J(t) ta-' ~ dr ~os,,o 2(dO) g(r) f(S,(r, v)) 

=fo dtJ(t) ta-' f dr'~o 2(dO')f(r')g(S_t(r',Y)) 
R~ at(o) 

where we used the Liouville theorem. We now observe that the position coor- 
dinate is the same in S_,(r', O') and S,(r', -O') and since g does not depend 
on the velocity, we may write as well g(S,(r' ,  - Y ) )  in the last integral. By the 
symmetry of the measure d2 under the change t3 --, - ~  we then complete the 
proof of property 2. All the properties of J~2)(r, r ')  listed in Section 4 have 
been proved. 

A P P E N D I X  D 

In this appendix we recall some basic notions of geometric measure 
theory; we refer to the book of Evans and Gariepy t tTi for more details. 

We recall that a set E c ~-" has finite perimeter when its characteristic 
function 1E belongs to the space BV(Y-) of the functions on ,Y'- of bounded 
variation. When E has finite perimeter, there exists a set 0*E (reduced bound- 
ary of E) and a function v: O*E~ R d, Ivl = 1 (generalized outer normal to 
O'E), such that for every vector field ~b ~cg~(.y-) the following generalized 
form of Gauss-Green formula holds: 

fE -~a d2 (b. v (D.1) dr div ~b = *E 

where ,42 denotes (a suitable extension of) the (d-1) -d imensional  surface 
measure. The set O*E is rectifiable in a measure-theoretic sense; the precise 
statement may be found in Section 5.7 of ref. 17. 

The perimeter P(E) of E is given by the surface measure 2(0*E) of its 
reduced boundary. When u ~ BV(~--; { i m p }  ), we define the perimeter P(u) 
of u as the perimeter of the set 

E := {rE J-: u(r) = --mp} (D.2) 

The following approximation result can be found in ref. 8. 

T h e o r e m  D 1. Let E, O'E, and v be as above. Then for any ( > 0 there 
exists a set F of class cg~ such that 

l E A  F[ < ( ,  2(O*EAOF)<( (D.3) 

where/x  denotes the symmetric difference of sets. 
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The following result has been used in Section 4: 

T h e o r e m  02 (Covering theorem). Let uEBV(9-; { +ma} ). Then for 
any 0 < ( <  1 there is h > 0 and there are disjoint parallelepipeds R, ..... R,, in 
R d with bases R d -  '-parallelepipeds B~ ..... B, ,  respectively, and equal height 
2h, so that 

h,~l= , dr IXR,-ul <~;  i=~' In,I < (  (D.4) 

where Z Ri : = rap( 1 R? -- 1 R/-)- 
It is possible to take all the R; congruent  to the same d-dimensional cube 

R of  size 2h. 

Proof. (Sketch.) Using Theorem D.1, we may restrict ourselves to 
the case aE  of class ff~; see (D.2). In what follows we denote by c; positive 
constants, possibly depending on d and mp, but not on ff and h. 

We can find pairwise disjoint open subsets Z'~ ,..., ~,, of OE which cover 
OE up to a set of(surface) measure less than c~ ~, and so that each L'; is (con- 
gruent to) the graph of a real functionf~: Ui --* R of  class cs where Ui c I~ a -  
is a bounded open set and f,. satisfies the bound 

IVf,.I ~ c2ff on Ui (D.5) 

See Figs. 5 and 6. 

Fig. 5. The shaded region is a set E with finite perimeter. Shown is a covering of parts of 0E 
by parallelepipeds as in Theorem D.2. Locally aE is the graph of a function; the segments outside 
E represent symbolically the domains of definition of these functions. 
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R 

I I 
I I : R d - 1  

U 
Fig. 6. Blowup of a single piece of the covering of Fig. 5. 

We choose now h > 0 small enough in such a way that the following two 
conditions hold: 

(i) The number 2 x/-dh (which is the length of the diagonal of a 
d-dimensional cube of side 2h) is less than the distance between Z; and Z"j for 
any i 4: j. 

(ii) For every i we cover U; with pairwise disjoint ( d -  1 )-dimensional 
cubes B c U; of side 2h up to a set of measure less than c3(/m. 

For any i = I ..... m and any ( d -  1 )-dimensional cube B c Ui appearing 
in (ii) centered at x we construct the d-dimensional cube R c R d with basis 
B centered at the point (x, f,.(x)) and with height 2h; see Fig. 6. Denote by 
RI ..... R,, (with bases B~ ..... B,,, respectively) the collection of all these cubes. 
We also assume that R ;  is in the direction of E. 

Using (D.5), we then have 

i=1 i=1 

Moreover, by construction, 

i f dr IXR,-- ul -- 2rap h R, ---ff-~ ( I R i - n E I + I R T n E c l )  

2m# 
<~ T 2c2ffh Inil ~< c6C In;I 

with E c the complement of E. Finally, thanks to (D.5) and (i) one can show 
that the Ri are pairwise disjoint for a suitable choice of the constants c;. I 
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